- SOFTWARE REUSE

888888888888

SOFTWARE
REUSE

ROY RADA

intellect”

OXFORD, ENGLAND

First Published in Great Britain (1995) in paperback by
Intellect™, Suite 2, 108/110 London Road, Oxford OX3 9AW.

Table of Contents

First published in USA (1995) in hardback by
Ablex Publishing Corporation, 355 Chestnut Street, Norwood, NJ 07648.

Copyright ©1995 Intellect Ltd. 1 Introduction 1
1.1 The Need 1
Intellect is a trademark of Intellect Led. 1.2 Types of Reuse 2
]) 1.3 Domain Analysis 3
All rights reserved. No part of this publication may.be rcprodgced, stored in a retrieval system, o 14 Hypertext 4
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or 15 Epilogue 7
otherwise, without written permission.
Section 1: Information Technology Management 8
2 The Software Life Cycle 9
Consulting editor: Masoud Yazdani 21 Requirements : 9
Cover design: Andrew Healey 2.2 Design 11
Copy editor: Martin Roe 23 Implementation 13
24 Testing and Documentation 16
2.5 Maintenance 18
2.6 Epilogue 19
British Library Cataloguing in Publication Data Prog
3 Management 20
Rada, R .1 Soft Te isati
Software Reuse: Principles Methodologies g 2 So ware “eam Orgamsa‘ ton 20
. ’ . oftware Project Modelling 23
and Practices 33 Scheduling 24
I. Tide 34 Epilogue 25
005.1
4 Reuse Framework 27
ISBN 1-871516-53-6 4.1 Process Idioms and Sources 27
S et . 4.2 Reuse Managment 29
Library of Congress Cataloging-in-Publication Data available 43 Asset Creation 32
44 Asset Management 34
4.5 Asset Utilisation 38
4.6 Costs versus Benefits 39
4.7 Legal Issues 41
4.8 Impact 43
49 Epilogue 44
Section 2: Reuse Process 46

Printed and bound in Great Britain by Cromwell Press, Wiltshire

iv Software Reuse

5 Organising
5.1 Indexing
52 Document Outlines
53 Domain Models
54 Code Organisation
55 Epilogue

6 Retrieving
6.1 Retrieval Specification
6.2 Document Retrieval
6.3 Program Retrieval
6.4 Retrieval Systems
6.5 Monitoring Retrieval
6.6 Epilogue

7 Reorganising
7.1 Retrieved Component Suitability
7.2 Document Reorganising
73 Program Reorganising
7.4 Code Generators
7.5 Testing after Reuse
1.6 Epilogue

Section 3: Practical Examples

8 Software Reuse Tools
8.1 CASE
8.2 Practitioner
83 SoftClass
84 A User Interface Generator
8.5 Epilogue

9 Case Studies
9.1 Successful Commercial Cases
9.2 Practitioner and the ABB Steel Works
93 IBM Reuse
94 The IBM Boblingen Experience
9.5 An IBM Reusable Parts Centre

Table of Contents

9.6 HP Reuse
97 Motorola Reuse

s 9.8 Epilogue

48

49 1 10 Courseware Reuse
32 : i0.1 Small Company
35] 10.2 Extended Reuse and Coordination Mechanisms

e _ 103 Epilogue

- 11 Discussion

e 11.1 Representations

61 . 11.2 Costs and Benefits

63 ' 113 Analogy to Traditional Libraries

g? | 12 Selected Glossary

74 _ 13 References

74 i

76 14 Index
77

83

85

88

89

90
90
95
107
113
116

117
117
118
120
121
126

127
130
131

132
133
138
143

145
145
146
148

150

154

161

iy

G

e

Preface

At first glance software reuse appears a natural way to develop software but in practice
this does not happen. The challenges are numerous and require a fresh approach to the
entire range of activities involved in the engineering of software. Every time new
software is needed the developers tend to write it from scratch rather than harness
components developed through previous projects. Why this is so and how it can be
changed will be explored in this book.

This book aims to cover the state of the art, principles, approaches, support
systems, underlying methodologies and real cases in software reuse. Document-
oriented versus object-oriented approaches to reuse are discussed and compared and
some software reuse support systems, incorporating both approaches, are described.

The first drafts of this book began in 1988 when the first draft of Section 1
‘Framework’ was written for a course on software engineering. Section 2 ‘Reuse
Processes’ and Section 3 ‘Practical Examples’ began with the joining of Roy Rada’s
research group in the European ESPRIT Practitioner Project on software reuse. Three
researchers at the University of Liverpool, Weigang Wang, Karl Strickland, and
Cornelia Boldyreff, were particularly active in the Practitioner work. Hafedh Mili of
the University of Quebec at Montreal is the leader of the SoftClass project which is
described in this book and was a regular contributor to the Practitioner project.
Many of Mili’s ideas and descriptions are included in this book. Important other
participants in the Practitioner project and indirectly contributors to this book are Lene
Olsen (then from Computer Resources International in Copenhagen, Denmark), Jan
Witt (from Peripheral Computer Systems in Munich, Germany), and Peter Elzer and
Jurgen Heger (then from Asea Brown Boveri in Heidelberg, Germany).

Two large documents which were produced by Liverpool as deliverables for
Practitioner were prepared on the MUCH system. In the summer of 1992 Stuart
MacGlashan and Michelle Usher were hired to reuse Practitioner deliverables and
other available material to produce this book. Weigang Wang and June Cornelius
supervised Stuart and Michelle. However, the expectation that the book could be
readily finished in the summer of 1992 was overly optimistic. Stuart continued to
work on the book 1 day a week from the fall of 1992 through the summer of 1993.
Renata Malinowski, a professional copy editor, worked long hours on the book since
late 1992. Claude Ghaoui managed the book production efforts of Stuart and Renata
and was involved in planning, reviewing, revising and printing. All the above listed
people deserve a very major thanks for their invaluable contributions to the book.

The generation of this book depended on document reuse. In the end, the
concerted effort of Stuart and then Roy was required to bring cohesiveness to the
book. A team of people involved in reuse must communicate extensively to produce
one seamless product and this was more easily achieved by one person working for a

Software Reuse

long time than many people working for a short time.

The outline of the original book was based on a paper that appeared in the Software
Engineering Journal in September 1992 [66]. This paper has a balanced outline
which is based on organising, finding, and reorganising documents and objects. Based
on earlier work [65], this balanced outline was expected to guide the collaborative
production of a cohesive book. In the end, relatively iittle of the book, only parts of
Section 2, actually reflected this balanced outline. Again the expectations for reuse
are not always reflected in practice.

The jury is still debating about the best ways to achieve reuse. The question is not
whether reuse is good but rather how to identify the circumstances in which reuse can
be effective. Reuse depends not only on the character of the available information but
also on the management of the authoring team. The contributors to this book are
committed not only to further exploration of the principles of reuse but also to the
practice of reuse in everyday affairs.

—

1
Introduction

During the last decade, the gap between the demand for new complex software
systems and the supply has widened. This gap and the difficulties faced by software
engineers in bridging it have been described as the Software Crisis, whereby systems
have become so large and complex that creating software for them is increasingly
more difficult to complete on tinie and within the constraints of the project budget.
Software reuse is of growing importance as a major factor in alleviating some of the
problems resulting from the Software Crisis.

1.1 The Need

Engineering is about using knowledge of natural principles from science and
technology to design and build artifacts. In the early 20th century, an engineer was one
who designed and supervised the execution of physical systems. In the late 20th
century, the notion of engineering has been extended. For instance, Webster's
Dictionary defines engineering as ‘the application of science and mathematics by
which the properties of matter and the sources of energy in nature are made useful to
man in structures, machines, products, systems, and processes’. A process is not
necessarily physical.

In the first 35 years of computer history the emphasis was on hardware
developments, but now the empbhasis has shifted more toward human concerns. As late
as the mid-1950s, 90 percent of application costs were devoted to hardware, but now
90 percent of the costs are software. This reversal reflects not only the decline in
hardware costs and the increase in programmer salaries, but also the recognition that
systems must be carefully designed and developed to accommodate human users.

Through history there have been various applications of programming technologies
that could be said to have caused revolutions. For instance, the Industrial Revolution
was marked by such progress as the invention of the automatic loom which had
instructions to form patterns in cloth. But the complex interaction between sequences
of instructions and machines that marks the modern digital computer is unparalleled in
the technological history of humankind.

Software is essentially a symbolic product and differs from the vast range of other
products produced by conventional engineering techniques. Software, once designed,
has no manufacturing phase and does not deteriorate, although changing environments
will usually require software modifications.

2 Software Reuse

Software may be systems software or applications software. Systems software
serves applications software and includes compilers, editors, file management utilities,
operating system facilities, and telecommunication processors. Systems software
interacts with computer hardware and usually requires scheduling, sharing of
resources, and effective process management. Applications software performs specific,
real-world tasks that the user requires. For instance, software to handle payrolls,
accounts receivable, and inventories are part of the applications software prevalent in
business information processing. These individual application products may be
integrated into a larger product, such as a management information system.

Studies have shown that reusability can significantly improve software
development productivity and quality. Productivity increases as parts developed for
previous projects can be used in current ones, saving on development time. Quality
can be increased as frequently used parts have been tested and debugged in a variety
of circumstances.

Despite the benefits of reuse, several factors exist which seem to discourage
software developers from embracing the concept of reuse. The most often cited
reasons why software is not reused are [86]:

. a lack of tools to support a developer in trying to reuse components,

» a lack of training for developers to create reusable components and to use
reusable components wherever possible, and

. a lack of an educational methodology and motivation (both financial and

psychological) to open the eyes of developers and their management to the
practical Ieng term benefits of reuse.
That software reuse has not been widely accepted questions the suitability of existing
management practices, organisational structures and technologies involved in the
development of software. In short a rethink of software development is needed.

1.2 Types of Reuse

While current management practices are not suitable for reuse-oriented development
methodologies, the unsuitability is often overstated. Part of the problem is due to a
blurring of the distinction between information life-cycles and development
methodologies, and one often gets blamed for the shortcomings of the other [2].
Roughly speaking an information life-cycle is a model for organising, planning, and
controlling the activities associated with software development and maintenance. For
the most part, a life-cycle prescribes a division of labor, and identifies and standardises
intermediary work products. A development methodology on the other hand specifies
a notation with which to describe those work products and a process by which to
arrive at those products.

Introduction 3

Activities associated with the life-cycle involve financial and human resources.
Diverting resources, both human and financial, into building a base of reusable
information has a number of organisational implications, including team structures
and cost imputations. In addition to the typical project team structure of information
organisations, a reuse library team is needed. Minimally, the library team would be
responsible for packaging and controlling the quality of what gets added to the reuse
library [59]. The librarians may work closely with the project teams that develop
information as those project teams both use material from the library and contribute
new material to the library,

Development methodologies broadly use either generative or building blocks
approaches. The generative approach shortens the typical information life-cycle by
removing design, implementation, and testing. Developers specify the desired
product in some high-level specification language. The generated information is
usually correct by construction, and no testing is needed [76].

The building blocks approach typically incorporates:

statement of the problem

computer-based search and retrieval of building blocks

assessing reuse worth of retrieved blocks

adapting the retrieved blocks to the present need or solving the problem

afresh.
Traditionally software reuse has meant the reuse of code, gathered together in
subroutine libraries. The reuse of software in the form of component libraries has
existed widely since the 1950s in such languages as FORTRAN. However, experience
has shown that only small improvements can be achieved by simply reusing code in
this way. From the documents of the software life cycle more than the code itself can
and should be reused. The hope is now to widen the scope of the reuse to cover all
products of the software development process, to include the components, together
with their abstractions, and their associated documentation.

B N e

1.3 Domain Analysis

Recently there has been a growing interest in domain analysis and domain model
‘reuse’, extending the scope of reusable information to earlier in the development life-
cycle than the code stage [47]. At this stage the software developer is able to look at
the structure of a component, expressed perhaps in some formal specification method
without the important concepts of the component being masked by implementation
details. This method does not offer the huge productivity gains made possible by
reusing a piece of code directly but has advantages. Storing components in this
manner allows for the range of requirements satisfied by any component to be
extended, since the items are in a simple generic form and can thus be more widely
applied, allowing changes to the design to be made directly. Storing components in
this manner it should be possible to reach a stage such that if a component at the
program code level is a close but not exact match for a developer’s desired component

4 Software Reuse

the developer would be able to trace back through that component’s development
history and find a level of abstraction at which the component is general enough to be
reused.

The main problem with reuse is how to render the software items readily reusable.
Domain analysis can be a fundamental step in creating real reusable components.
Organisations who have conducted domain analysis prior to creating reusable
components have met with greater success in software reuse.

Domain Analysis is a method for analysing a software domain by studying existing
software systems, emerging technology, and the developments in terminology of the
software field [39]. In domain analysis common characteristics from similar systems
are generalised, objects and operations common to all systems within the same
domain are identified, and a domain model is defined to describe the relationships
between the objects [59].

Domain modelling in software reuse aims to provide a framework for the
identification of objects, operations, and other structures that can be captured as
reusable software concepts. Both domain expertise and expertise in design-with-reuse
are used for efficient domain modelling. Whether the domain analyst is an expert in
the domain or not, she will require access to, and experience in the use of, tools that
can aid in providing an overview of the domain. Such tools and techniques have been
developed in areas such as systems analysis and knowledge engineering, where the
problem of domain comprehension is also a central issue.

The concepts of ‘domain analysis’ and ‘domain modelling’ are fundamental to all
object-oriented approaches to software modelling. One commonly cited and well
understood example of a domain is that of Mathematical Applications. The topics in
this area can be modelled into classes, such as ‘equations’, ‘set theory’, “calculus’ and
so on. The equations class, for example, can be subdivided into further classes, called
subclasses, such as ‘simultaneous equations’, ‘differential equations’ and so on, as can
the other classes. Often these subclasses too can be split further into subclasses, and
5o on (see Figure 1.1).

A long dogument that is to be read by people usually has a table of contents or an
outline. This table of contents corresponds to a hierarchy of headings in the document
and gives readers an overview of the contents, enabling them to find thematically-
organised sections. Due to the nature of this division a well-organised outline is a
ready made form of domain model. This is an example of reuse of information
already contained in documents helping the reuse process.

1.4 Hypertext

Hypertext is a richly-linked, document-like information structure. It allows the reader
of a document to access the information stored in it from many perceived points of
view, in any order and to follow many different paths through the information. In a
hypertext system, information is stored in ‘chunks’ which can be of any size,
depending upon implementation. These chunks are called nodes, and they can be

Introduction 5

Mathematical Applications

Equations

elc.

Differential
Equations

Simultaneous
Equations

2 Variables

Many Variables

elc.
Simple
Solutions

Figure 1.1: Domain Analysis. The ‘Domain Analyst’ divides up the
domain into it's various classifications.

Complex
Solutions

linked together to make up a document (see Figure 1.2).

Hypertext systems are a benefit in a reuse environment because to understancli a
software concept that is to be reused, typically large amounts of information, which
will exist for any well-documented software project, have to be examined by the
developer. To access this material for relevant information by hand is tedious and
time consuming. Good hypertext systems make this task easier and more accurate.

A common example of software documentation access that could be improved
using hypertext is the UNIX documentation system, called ‘man’ (for manual). The
Unix man system offers on-line documentation explaining the function and usage of
programs that are available to users of the system. An example is the ‘man Page' i"or
the command 1s. Its ‘man page’ describes how to get listings of different directories
and what the access rights each file is listed with mean and so on. To help the user
understand what these concepts are and which commands are necessary to influence
these attributes the ‘man page’ contains a reference to related commands.

6 Software Reuse

In a hypertext system if a reference to one of these commands was present, simply
clicking on the reference would retrieve the ‘man page’ for that command. Then
clicking on another button will bring back the ‘man page’ from which it was
summoned. This can be used recursively, if a called-up page references another page,
then further references can be followed and back-tracked at will by the user.

| Introduction

to hypertext |
g - ﬁ ;
What is
hypertext ?
e
el L]
How does ; Retal
hypertext 7 B
work ? k&
Whatis |
= alink ? |
o i
R 5 &‘ " 3 E
i =.- P . i
History of yﬁg}% : What is ;
hypertext ; w—&@ﬁ anode? | :
S § —— e e
e g b
b ik sk ;

Figure 1.2: Hypertext Document. The text of the document is held
in nodes, the order in which information is presented to the user will
depend on the path followed through the nodes.

Hypertext techniques are also useful with program code (see Figure 1.3). When
trying to understand what a segment of code means, the developer needs to know how
each of the variables in that segment are defined. The only method to find this out is
usually to methodically read through the listing noting where variables are defined and
modified and searching through documentation to find a description of the variable.
This is tedious and with opaque code, a very difficult task. A hypertext system could
automatically analyse the program to find definitions and references to variables and
to search documentation for definitions. Thus, if the piece of code was being viewed
using one of these systems the variables would be highlighted in some way, bold font
for example, and clicking upon one of them would bring up that variable’s definition
and a list of references to it in the program.

Introduction 7

strepy(name, (int) gl +2);
getblock(}):
g2 = (char *) strchr{buf, ""'};
if (1g2)
{
/* No luck this time */
strcat (name, buf);
getblock();

Figure 1.3: Ccodel, a sample C program. The variables ql, q2,
name, and buf must be understood.

Hypertext may also support collaboration. Hypertext systems can be set to log
access to each piece of information. Such a system can then keep track of who has
accessed what and when. It can then be an aid to understanding which are the most
important parts of the documents, who in the team understands which parts of the
system, and so forth.

1.5 Epilogue

There is increasingly a need for more reliable and complex computer programs which
will be delivered on time and will be cost effective to maintain. Traditional software
engineering techniques do not fulfill these needs. Software reuse techniques may help.

Inhibitors to the widespread acceptance of reuse are both managerial and
technological. This book emphasises a technological approach to reuse based on
domain analysis and software libraries. The management problems and solutions are
also described.

Section 1;

Framework

This section contains two short chapters and one long chapter. The short chapters
provide fundamental background to the topic of software development that is also
critical to software reuse. The first chapter describes the software life-cycle and the
second chapter introduces issues in the management of software engineers.

Inhibitors to effective software reuse are largely managerial in character. Software
engineers must be persuaded that creating material which fits well into a library is of
long-term value. The first two chapters relate to management in software
engineering and to the life cycle of software components. One can not properly
understand the management of the people and their tools without also understanding
the processes through which the software objects themselves go.

The third and longest chapter details a conceptual framework for reuse. A reuse
life-cycle for software assets is described that centers around the library of assets. The
human issues in the reuse framework are also emphasised in a cycle of activity that
goes from planning to enactment to learning.

Through the chapters in this Section the reader will learn about the phases of the
software life cycle, about estimating the costs of software production, about reuse
management and engineering, and about corporate and legal strategies. Software
reuse involves many, many aspects that are both concerned with people and with
software. For instance, to establish a software reuse library one should first estimate
the costs of developing software with or without the library. Legal matters, such as
copyright, may play an important role in determining what is or is not reused.

2
The Software Life Cycle

The classic software life-cycle was not conceived with reuse in mind. This lifecycle
has been criticised for being inherently top-down, whereas good software reuse
techniques require a combination of top-down and bottom-up approaches.
Nevertheless, an understanding of the traditional approach is important as a
foundation for understanding reuse, and this chapter provides that foundation.

The traditional software life-cycle emphasises the need for each step to meet the
specifications of the previous step (see Figure 2.1). The five basic steps are:

1 Requirements describe what the client wants from the software.

2 The design represents the requirements in a language closer to that of the
computer.

3 In the implementation step the design is converted into actual code that can

be executed by a computer. If the design is very formalised, this may be an
automatic step.

4 Testing is the proving of the implementation by the rigorous application of
data to the system.
5 Maintenance is the longest part of the cycle, it is the modification of the fin-

ished program as and when the need arises.
This stage is made easier if the previous stages have been well executed.

Use can also be made of other common process concepts, such as incremental
delivery [75). In incremental delivery the software life-cycle is divided into parallel
parts (see Figure 2.2). For instance, the design can be divided into parts each of which
is done separately and simuitaneously but is later integrated. With rapid prototyping a
simple version of the desired system is quickly constructed for the sake of insights
about the important problems throughout the cycle.

2.1 Requirements

Requirements should:

. be helpful and understandable to end users,

. serve as a basis for design and testing,

. be suitable to the application, and

. encourage thinking in terms of external and not internal system behaviour.

A software requirements document establishes the first official boundaries on the
solution space of the problem of developing a useful software system [96].
Depending on the complexity of the problem, the size of the requirements document
will vary. For instance, a requirements document for a ballistic missile defense system

1] Software Reuse

Requirements

Design

Implementation

Testing

Maintenence

Figure 2.1: Software life-cycle. The software life-cycle seen in a
typical production engineering flow chart.

contained over 8,000 requirements and filled 2,500 pages [9).

The most popular language for requirements is natural language because it is the
most expressive and because it is understood by both users and system developers. A
software requirements document contains a complete description of what the software
will do without describing how it will do it. It serves as the basis for all design
activities, and all system test planning. The IEEE Standards document for software
quality says that requirements should [16] :

"clearly and precisely describe the essential functions,
performances, design constraints, attributes, and external interfaces.
Each requirement shall be defined such that its achievement is
capable of being objectively verified by a prescribed method, for
example, inspection, demonstration, analysis, or test.”
Whilc natural language requirements may perpetuate ambiguity, they are critically
important. For example the requirements for the Ada programming environment [18]
include:
"The database shall support the generation and control of
configuration objects, that is the objects which are themselves
groupings of other objects in the database."
More rigorous specifications will be needed, but they should be complemented by the
natural language version, in any case. Surprisingly the expression of requirements in
natural language may lead to less misunderstanding by software developers than more
formal requirements.

The Software Life Cycle 11
| Regquirements I
I \ Design of
I Design of Subsystem I A o L Other Subsystems
|
Subsystem 1
Production Produciion of
| Other Subsystems I
| Testing of Subsystems I
Testing of
l Integration Other Subsystems
I Maintenance |

Figure 2.2: Incremental Delivery. Incremental delivery view of
software life-cycle.

Two major components of the requirements document are the conceptual
requirements and the functional requirements. The conceptual requiremenis is a high-
level description of the relationships among the services of the system. The functional
requirements describe how the system will function [95].

The outline of a requirements document may be divided into parts that include
operational and non-operational requirements (see Figure 2.3) [30]. Operational or
testable requirements outline the system’s performance characteristics, interface
constraints, quality assurance standards and human factors. The operational
requirements can be traced through the design and implementation of the system.
Non-operational requirements outline the organisational resources available to support
system development, the package of resources available, forethoughts about the
system’s development cycle, assumptions about the system operation in its target
environment, and expected changes in the system operational requirements over the
life of the system.

2.2 Design

Two different designers using the same design method and same requirements
document would not necessarily generate the same design (though some
methodologies such as Jackson Structured Design state that they should). The designer
must still rely on his or her own insight and creativity in decomposing the system into
its constituent structures and ensuring that the design adequately captures the system
specifications. Design methods in common use have been criticised because they are
largely informal. Nevertheless they have been applied successfully in many large
projects and have resulted in significant cost reductions.

12 Software Reuse

1. Overview

2. Problem
2.1 Technology in use

System diagram

Theory of system operation

Intended applications

User skills

onal requirements

Performance characteristics

Standard interfaces

Software guality assurance

Software portability

User orientation

4. Non-operational requirements
4.1 Resources available for development
4.2 Package of resources built into system
4.3 Forethoughts about system life cycle
4.4 Assumptions about system operation
4.5 Expected changes in requirements

5. Functional requirements

6. Architectural requirements

[N ISR N W]
[FA I~ FY % 8

3. Opera

W ww w
[T B S

(¥
un

Figure 2.3: Operational or Testable Outline of Requirements Docu-
ment. Functional requirements detail computational functions the
system is to perform. The architectural requirements describes the
interconnection among abstract modules.

There is no single design tool which is best for all types of software design. In
fact, there are hundreds of different design tools and design notations, each of which
may be useful for describing different levels of design within particular application
areas. Some of the more common, generic design tools include data flow diagrams,
structure charts and trees. An experiment was run in which a group of students were
asked to use various methods and a group of experts assess the results [95]. The
conclusion of the study was that the Data Flow Diagram method was easier to use and
learn.

Data-flow diagrams may be part of top-down design methodology. Top-down
design involves decomposing the system into its functional sub-components and then
creating a design for each sub-component. The designs for the collection of sub-
components are joined to create a design for the overall system. For top-down design
there are 4 phases:

The Saftware Life Cycle 13

1 study and understand a component of the system requirements,

2 identify major features of one possible design for this component,

3 construct a data flow diagram, showing gross data transformations in the
system, and

4 from the data flow diagram construct a structure chart showing the program

units, and describe these program units in pseudo-code.
A data flow diagram shows how data is transformed as it is moved from one system
component to another. Structure charts are hierarchical trees with the roots at the top
and are useful tools for system design. A software system is broken down into
separate programs and each program is decomposed into modules. Each of the
modules is broken further into smaller modules. Decomposition continues until the
amount of information in the module is small enough to be easily managed.

By example, an Office Information Retrieval System (OIRS) can file documents
under some name in one or more indices, retrieve documents, display and maintain
document indices, archive documents and destroy documents. Commands might
include get proposal, file as on-loan, and edit proposal. A first data flow diagram of
this OIRS system reveals modules which handle each of the inputs and outputs. A
further decomposition of the data flow diagram shows the user command leading into
the database query. The output comes from the database and is transtated into an
output message and output data (see Figure 2.4). The structure chart takes the data
flow diagram and imposes a hierarchical structure. Then it is easier to decide which
effort can be independently invested in which part of the OIRS system (see Figure
2.5).

2.3 Implementation

After design comes implementation of code or software. Correspondence from design
to code should be correct and traceable. 1t should preserve all decisions made earlier.
With a well-defined design notation, it may be possible to specify explicit guidelines
for mapping design constructs to code.

If a project has the opportunity to select the programming language to be used, it is
desirable to consider support for high-quality, component construction provided by a
candidate language. Some of the considerations include:

. Its support for extended parameterisation through a facility such as Ada’s
generic procedures,

. Its ability to guarantee error-free, robust software through such mechanisms
as type checking, and

. Its support for the creation of readable, modifiable, and maintainable

programs,

14 Software Reuse

Input
Command

Validated
Command

Information
Command

Terminal
Message

Received
Data

Figure 2.4: Data Flow Diagram. Data flow diagram for Office In-
gormanon Retrieval System. DBMS means DataBase Management
ystem.

Also, the anticipated language requirements of future systems should be considered.

If the programming language provides exceptions (a means of signalling an
exceptional condition by transferring execution control to a routine specifically
provided to handle that condition), this can be a way of handling boundary conditions
flexibly. The component might also provide auxiliary routines for getting additional
information about what caused the exception. A ‘safe’ component will likely include
a number of checks to insure that the component does not accidentally crash. For
example, there may be checks on expressions for division by zero, for checking that a
queue is empty or full, or for hardware read errors when reading from a disk.

The principle of information hiding refers to the concept of making certain
information visible while hiding other information. This supports the view of a
‘software chip’ -- a black box whose function and interfaces are well-defined while no
knowledge of its implementation is required. The interface specification provides the
‘directions’ for component installation.

The Software Life Cycle 15

OIRS
Form Analyse
Query DBMS Reply
Form
Analyse DB Query
Il\ Output Qutput
Message Data
Get Valid Translate
Command Command
Get Check
Command Syntax

Figure 2.5: Structure Chart. Example of a structure chart for pre-
ceding Data Flow Diagram.

In an object-oriented methodology [44], an object representing a data item is
defined in terms of the values it holds and the operations that may take place on those
values. Objects belong to classes, which are groups of objects which share common
features, inherited from their class. The state or values held by an object are changed
by sending a message to the object invoking one of the functions defined in it. This is
a form of information hiding since the object sending the message only understands
the message sent and the effect it should have, not exactly how the change will be
implemented. This is useful since it means functionally equivalent objects can be
swapped and when an object is reused what expectations the new program can make
are clearly defined in the messages an object can receive.

16 Software Reuse

2.4 Testing and Documentation

There are two main categories into which program testing strategies fall [28):

e Functional Testing techniques are based around checking a component using
data that the component is likely to receive in use and ensuring responses are
apt.

. In Srructural Testing technigues, test data is designed using a knowledge of

the structure of the component to be tested. For example, if it is known that
values in the ranges 10-20, 30-40 and 80-200, will cause different branches
through the program to be executed, then values in all three of these ranges
would be used to test the program.

These two methods can also be combined [93].

Quality assurance or testing should not wait until code is finished. At each phase
of the life-cycle, testing should ensure that the appropriate requirements for that phase
are being followed. Testing should be included in each design review, with an
established audit procedure for each product and activity. If the guidance is ignored
in these carly phases, little benefit will be gained from following it in the coding
phase.

Testing usually focuses on products - specifications and code. These are usually
amenable to objective quality measures. It is important to also audit the work
activities that influence the quality of the product. For example, such evaluations
might address:

. whether software engineering tools are being used as expected, and whether
they are serving the intended purpose and
. whether changes to components are strictly controlled by configuration

management procedures.
Evaluations should be objective and should be assisted by a checklist to ensure that all
key points are covered. Such a checklist also provides a mechanism for documenting
audit results and preparing discrepancy reports.

Documentation of the software development cycle is essential, both to manage and
distribute information within the project whilst it is in progress and to be able to
maintain the system once in use. In fact it can be said that the products of the software
life-cycle are mainly documents. A further demonstration of this is that in 1979 within
the IBM Corporation, the title ‘technical writer’ was changed to ‘information
developer’ to reflect the widening scope of the writer’s responsibilities. IBM has said
that information development can be thought of as one of three equal parts of a total
IBM product, where the other two parts are hardware development and software
development.

The authoring of documentation is called information development to differentiate
it from normal writing activities, such as writing this book. In large organisations
information development may be best accomplished within the confines of a single
administrative unit. In this situation information development work can be moved

The Software Life Cycle 17

within the existing organisation rather than moving the information development
people to different administrative units in the company. On the other hand, integrating
the information developers into the overall organisation increases the opportunities for
synergism among the project’s hardware and software groups. Differences between
‘information development’ and traditional technical writing include that the
information developer:

. tends to get information from people rather than books,
. works as part of a team,

. tests the information for its usability, and

. may put the final written product into a variety of forms.
The information development process can be decomposed into the following
sequence:

. become familiar with the hardware and software plan,

. set objectives for the information to be provided,

. develop drafts,

. verify the draft with inspection, editing, and testing, and
. maintain the information based on feedback.

The model for good information development suggests some approaches to proper
education for information developers. For one, collaboration must be part of the
process. For ancther, the hardware and software professionals must be approached as
peers in the development process so that feedback can be bidirectional.

The theory of documentation stems from philosophical as well as scientific
considerations and should address the broad problem of user support technology of
which manuals are a part [91]. This theory should help define the relationship
between internal support, such as for screen design and external support, such as
manuals. It should clarify the relative costs and benefits of information services, such
as teaching and consulting versus information products, such as manuals and tutorial
disks. One principle of a theory of documentation is that:

"nearly every aspect of user support (including manuals) derives

from the nature of the user interface.”
Consequently, the nature of the user interface must be considered as part of the initial
product conception, and the user interface specification made as important as the
hardware or the software specification. Another principle states that:

"Manuals are a component in a fully-designed ‘user support

envelope’, which may include any information product or service

made desirable or necessary by the user interface.”

Manuals are not the lone creations of individual writers or artists. Each publication
should be written to an engineered specification, not created in private by an artisan,
Each part of the document should go into a data base where it will be maintained and
reused by other writers. Manuals will be developed through models and prototypes
and tested before they are drafted, by applying the principles to models [91].

18 Software Reuse

Case studies reveal interesting patterns in investment in documentation. Firms
which make a large investment in a product of which only a few copies are sold tend
to rely heavily on personal contacts with the buyers to help the buyers use the product.
Firms which sell large quantities of a modestly priced product find it cost effective to
have excellent documentation because the firm could not afford the number of service
calls which would be required for helping the users in person. More specifically, two
variables dominate management’s decision on the relative size of its investment in
documentation. High projected sales volume seems to predict a relatively large
investment, because high volume precludes personal contact with customers before
and after sales. High unit cost, on the other hand, predicts a lower relative investment
in documentation, because personal contact is more effective in influencing the
purchase decision and competes with documentation as a means of delivering
maintenance support.

In the case of low-investment documentation the vast majority of time spent on
documentation goes towards writing. Relatively little time goes into management,
editing, or artwork. For a high-investment documentation effort the man-months spent
on each part of the documentation are relatively equally distributed among
management, writing, editing, and artwork.

2.5 Maintenance

The primary business of the software industry has historically been new
development; now it is maintenance and evolution. Today more software
professionals are employed to maintain and evolve existing applications than to
develop new systems from scratch. Software engineers need a variety of analytical
skills, tools, and methodologies to cope with the challenges of maintaining large,
aging software systems. The software industry critically depends on enhancing the
maintenance processes of legacy or heritage systems which potentially constitute
immense corporate advantages if managed effectively.

Every time an alteration is made to any aspect of the software, be it designs or
code, it is necessary to make the corresponding change in the documentation to
indicate the change. Otherwise, it may be very difficult for another programmer to
understand the software sufficiently to maintain it. Software maintenance is the term
given to the process of modifying the program after it has been delivered and is in use.
These modifications may involve simple changes to correct coding errors, more
extensive changes to correct design errors, or drastic rewrites to accommodate new
requirements,

Programmers may hope that what is important about their programs is immediately
visible: Realistically the problems are many, and cost lies under the surface. Generally
the cost of software maintenance has steadily increased during the past 20 years. A
typical software development organisation spends about 40% - 60% of its money on
software maintenance. The common error made by the maintainers is that, when an
error is encountered, the coding is investigated and corrected, but the documentation is

The Software Life Cycle 19

not correspondingly updated. Whenever a change to the software, whatever the format
or type of change may be, is made, the documentation must also be updated.
Otherwise a subsequent user or maintainer would find it difficult to realise the change
that has been made to the original version of the software.

2.6 Epilogue

Reuse may take place at any level of the life-cycle model, and thus the model needs to
be changed at each level to reflect reuse practices. Perhaps one of the most
fundamental criticisms of the traditional software life cycle is its separation of design
and implementation. In a reuse environment design and implementation are linked in
that to implement using a pre-designed (reusable) component may mean going back
and changing the design, i.e. analysts may need to look ahead in the process to
determine what components are available to them in the components library and tailor
their design accordingly. It would therefore be better, if these two stages were linked.

Reuse of components is greatly facilitated if the components are in machine
readable form. This is essential for effective computer organisation and retrieval of the
material (which is discussed in Section 2 of this book) and also means that the
components can be loaded into software engineering support tools, since this will
usually facilitate the easiest manipulation of this material. This portability of
representations is unlikely to be generally possible until there are more widespread
standards for these representations and tools.

20

3
Management

Developing large software systems must be treated, at least in part, as a learning,
communicating and negotiating process. At the early phases of a project much of the
effort must go into becoming familiar with the application. A small subset of the
design team with superior application knowledge often exerts a large impact on the
design. Organisational boundaries to communication among groups inhibit the
integration of existing knowledge. Any software development environment must
become a medium of communication. This chapter describes the role of
communication in team organisation and in project modelling and scheduling.

3.1 Software Team Organisation

The popular image of programmers is that they work alone, an image held both by the
programmers themselves and others. In fact, a great deal of programming is
cooperative. In one major study 50% of a typical programmer’s time was spent
interacting with other team members, 30% working alone, and 20% in not directly
productive activities [43). The interaction of personalities within a group and the role
of the leader are critical to group success.

Experience suggests that programming teams should be relatively small--fewer
than 9 members [79). A small team minimises communication problems, supports
consensus management, and allows each member to know what each other member is
doing. If one person leaves, that person’s work can be easily continued. High-level
system design is done by senior team members but low-level design is the
responsibility of the person given the task. A serious problem arises when no team
members have substantial experience, for then the authority of the experienced
members is missing and co-ordination suffers.

The traditional management structure is strictly hierarchical (see Figure 3.1). Ina
large organisation there should be a director of software or information technology.
This person may well have vice-president status in the organisation. Reporting to this
director are several program managers and a quality manager. The quality manager
also has several teams of quality assurance people whose job is to help evaluate the
success of the software development which is being directed by the other program
managers. The quality manager has a direct line to the director so as to avoid
distortion of the quality assessment results. The program managers have project
managers who report to them, and team leaders report to the project managers.

Management 21

Software
Director

Quality
Manager

Figure 3.1: Hierarchical Management. Sketch of part of hierarchy
in information technology management.

The chief programmer team approach utilises an experienced chief programmer
and provides him with substantial support [4]. All communication goes through the
team chief. The other members of the team might include :

. Backup programmer who provides general support as well as developing test
cases,

. Librarian who does all clerical work associated with the project and is
assisted by a computerised document management system,

. Toolsmith who produces software tools,

. Documentation editor who prepares the documentation of the chief
programmer for publication, ‘

. Project administrator who does administrative tasks for the chief
programmer, and

. Language and system expert who is familiar with the idiosyncrasies of the
language and system and helps the chief programmer take advantage of those
idiosyncrasies.

A diagram of the ‘chief programmer’ concept shows the relative decentralisa?ion that
the concept allows relative to the traditional approach where a programmer is at the
bottom of a large hierarchy of administrators (see Figure 3.2).

The technical and the administrative leader of a software group are not necessarily
the same person. Expertise with the technology and handling the problem at !1and is‘so
important in programming work that the person with this expertise at any given pou?t
is likely to command respect [79]. The autocratic style of leadership which may suit
the military does not necessarily suit programming groups. Group loyalty can be
important in that it strengthens the interpersonal ties and makes it easier for people to
help one another. On the other hand, the group leader must prevent a group from

22 Software Reuse

Qutside

Communication

Specialist
Pool

Figure 3.2: Chief Programmer. The Chief Programmer paradigm
allows the expert programmer to take advantage of the resources of
a team of assistants.

adopting narrow-minded attitudes as a consequence of the conservative impacts of

loyalty.

Individuals in a work situation can be classified into three types. An individual type
and what motivates that type are paired as follows:
* the task-oriented type is interested primarily in the work,
. the interaction-oriented type of person most appreciates the presence of co-

workers, and

. the self-oriented individual wants mainly personal success.
When a group was composed entirely of members of one type, only the group
composed of interaction-oriented individuals succeeded. The most successful groups
have individuals from each class with the leader being task-oriented. In practice, two
group members often play complementary roles. A task specialist sets, allocates, and
coordinates the work of the group. An interaction specialist helps maintain the social
equilibrium of the group [90]. Since the majority of those involved in computer
programming work are task-oriented, attention must be paid to the selection of
memﬁers of a group to assure a mixture of personality types. Egoless programming
requires the members of a group to contribute to the group without necessarily
identifying the productivity of individuals. In this way, an individual is less likely to
feel attacked when criticisms arise about work which that individual produced.

. While communication is critical for group productivity, communication is often not
directly productive. Accordingly, a group should be organised so that the amount of
communication necessary for effectiveness is minimised. One way to do this is to have
a small group. The layout of the office space should allow privacy on the one hand and
group face-to-face meetings of both a formal and informal nature, In other words, the
individual should have a private space with his or her own workstation, but a lounge

should be available for informal meetings, and a seminar room should be available for
group meetings.

Management 23

3.2 Software Project Modelling

Many models for costing software projects have been developed. In one experiment
several of these models were applied to the same input data, but cost estimates were
produced which varied from $300,000 to $3,000,000 [48). This vast discrepancy
points to the importance of choosing a model which fits the character of the
organisation and project at hand. One of the better documented software costing
models is the COCOMO one [10). The COCOMO (COnstructive COst MOdel)
method is based on the premise that one can estimate the number of thousand (or
Kilo) Delivered Source Instructions (KDSI) that will be needed to complete a project.
This quantity is then used to compute an estimate for the effort required for
completing that project. Estimating KDSI may be as difficult as estimating the effort
directly. However, by breaking the system intc small enough modules, one can
estimate the KDSI for each module. Then assuming that interactions among modules
will not lead to significant additional needed instructions, the total KDSI is the sum of
the KDSI over the modules.

Versions of the estimation formula exist for both organic mode projects and
embedded mode projects. An organic mode project requires only a small team
working in a familiar environment. Communications overhead is low. An embedded
mode project involves a maze of hardware, software, and regulations. Project team
members are new to this problem type, this is a more complex problem and the
completion time will be correspondingly longer. Even though the output of the
COCOMO model is very rough, it can be useful for management decision making.
Graphically, the relationship of person-months to KDSI is like a straight line for the
organic form and a parabola for the embedded form (see Figure 3.3).

The simple assumption about effort is that the amount expended on a project is
proportional to the product of the number of people working on a project and the
amount of time they spend on the project. Thus, if each of 10 people works 5 days on
a project, then the project has had 50 person-days invested into it. Assessing projects
as to the number of person-days required to complete them implies that assigning
more people to a task would shorten the number of days required to complete the
project. For instance, 50 people working one day might be able to solve the 50 person-
day problem. In reality, however, this assumption about productivity is misleading.
The difficulty is akin to the difficulty with multiple processors in a parallel-processing
computer. Namely, as more processors are assigned to a task, the inter-processor
communication costs rise and may overwhelm the advantage of additional processing
power.

Each new person brought into a project needs instructions about what he or she is
to do, which takes time from those who give the instructions. The new person can do
work but also needs guidance which costs the work time of others. In the worst case,
the communication needs are such that a new person must communicate with every

24 Software Reuse
Person-
S Embedded
Qrganic
~
KDSI ~

Figure 3.3: COCOMO Curves. Curves showing the growth in per-
son-months needed to generate a certain number of lines of code.,

person already on the project. If there are p-people and each must spend time i
contact with the other p-1 people, then the amount of contact is p(p-1) or roughly p”.
The effort which can be expended by p people over t time when there is no overhead
cost is p times t. Given that e effort satisfies e = p times t, the time to complete a given
task is t = e over p. As p grows, t declines. If the communication costs are
considered, then these costs are proportional to the square of the number of people.
In this case, the curve of t versus p no longer declines monotonically with p; rather
there is an inflection point from which t rises with rising p (see Figure 3.4).

3.3 Scheduling

Without some estimate of programmer productivity, project scheduling is impossible.
Also, some of the advantages to the use of new programming and management
methodologies are difficult to assess without quantitative measures of programmer
productivity. The most commonly used measure of programmer productivity is lines
of source code per programmer-menth. This is computed by dividing the number of
lines of source code delivered by the programmer-months in the project. The
programmer-months include analysis and design, coding, testing, and documentation
time. One of the difficulties in applying this measure of productivity is defining ‘a line
of code’ [33] . Another difficulty is that this measure does not take into account the
quality of the code produced, only the quantity.

Management 25

Time

People

Figure 3.4: Time Rising. Curve showing the initial decline but the
subsequent rise in time as people are added to the job.

There are a number of different tools available to help schedule projects. While
bar charts provide a useful visualisation of part of project planning, they fail to show
dependencies among tasks. For instance, if T3 has to be done before T4, then a delay
in the completion of T3 must be reflected in a change in the timing of T4 (see Figure
3.5). Activity networks overcome this deficiency, as they portray dependencies. Each
node of an activity graph represents the culmination of one or more activities. A
labeled arc from one node to another could represent the name of the activity along
with the time required to complete the activity.

To develop a schedule, a project is first broken down into tasks. Next one asks:
“What other tasks must be completed before this task finishes ?* ‘“How long will it take
to perform this particular task ?* Given a project begin time, one can compute the
‘Earliest Begin’ and the ‘Earliest Finish’ times for each task, and the total project
duration.

3.4 Epilogue

Producing large systems is a difficult task of managing both people and information.
This is true in a reuse environment where extra personnel, such as those that manage
and retrieve elements from the reuse library, are needed. The Chief programmer
approach to software team organisation includes reuse-oriented roles, such as the
librarian role.

26 Software Reuse

T5 — T S L S e

T4

T3 P T T

Tl

Person A Person B

Figure 3.5: Bar Chart. Person A does tasks T1, T2, and T4, while
Person B does tasks T3 and TS.

Of the many models which have been developed to model the development of
software systems, the COCOMO model is perhaps the best known. It estimates the
number of lines of code that a project will need to produce and shows interesting
relations among project type and effort required. Reuse parameters can be folded into
the COCOMO model.

The mythical man-month notion shows that adding more pecple to a project does
not necessarily reduce the time needed to finish the project. Adding a person to the
project may bring more communication costs than productivity benefits. Initiating a
reuse effort may initially require additional staff and their concomitant costs.

To schedule a software project, tasks and their dependencies must be appreciated.
Software reuse introduces new tasks and dependencies. The challenge then is to
manage these dependencies so that overall benefit exceeds overall cost.

27

4
Reuse Framework

The vision for reuse is to move from the current ‘re-invent the software’ cycle to a
library-based way of constructing software [32]). A conceptual framework for reuse
should provide the technological and management basis to influence and enable this
paradigm shift. In this new paradigm the standard approach to software development
is to derive systems principally from existing assets rather than to create the systems
anew. Reusable assets are thus a central concept of the reuse vision, and they imply a
need for processes to create such assets, manage them and utilise them to produce new
systems.

Experience suggests that this library-based approach must be domain-specific.
Being domain-specific means that the reusable assets, the development processes, and
the supporting technology are appropriate to the application domain for which the
software is being developed. Application domains are generally considered to be
broad in scope, for example communication systems. The effectiveness of domain-
specific assets depends on a number of factors, including the maturity of the
application domain and the investment applied to create the assets. As a domain
matures, it generally becomes more stable and better understood, thus increasing the
likelihood that assets will be reusable. However, even in mature domains, asset
reusability and quality will be maximised only if suitable investment has been applied
to identify and exploit key reuse opportunities. Domain analysis and its resultant
meodels are critical to the success of a domain-specific reuse program.

4.1 Process Idioms and Sources

Software engineering should be done in accordance with well defined, repeatable
processes. One framework for reuse consists of dual, interconnected ‘process idioms’
called Reuse Management and Reuse Engineering (see Figure 4.1). Outputs from the
Framework are software systems and new reusable assets.

28 Software Reuse

CREATE
UTILISE

Figure 4.1: Reuse Management and Reuse Engineering. Plan, En-
act, and Learn are in the Management idiom. Create, Manage and
Utilise are in the Engineering idiom.

The Reuse Management idiom describes a cyclic pattern of activity addressing the
establishment and continual improvement of reuse-oriented activities within an
organisation by emphasising learning as an institutional mechanism for change.
Learning in this context means actively evaluating and reflecting on behaviour to
effect positive change. The Reuse Engineering idiom also explicitly recognises the
role of the broker as a mediator between asset producers and consumers. The Reuse
Management and Revuse Engineering idioms represent reuse-specific adaptations of
more general forms of organisational activity. The Framework specialises these more
general idioms to facilitate adaptation of a wide body of management and
organisational theory to the software reuse problem.

The Framework is generic with respect to domains, organisations, and
technologies. Framework concepts should generally be applicable to reuse in any
information-intensive context, such as technical documentation or scientific
information management. The scope is limited to identifying the processes involved
in reuse and describing at a high level how those processes operate and interact,

The Framework which is described in this chapter is largely based on a document
entitled “STARS Conceptual Framework for Reuse Processes (CFRF), Volume 1:
Definition, Version 3.0".[17] That document reflects an effort to modernise software
productivity by the Software Technology for Adaptable, Reliable Systems (STARS)
program of the U.S. Department of Defense. The Framework reflects the experiences

Reuse Framework 29

of software reuse efforts both within and outside of STARS. The Framework
provides a conceptual foundation for reuse processes needed to accomplish the
STARS reuse mission. However, for an organisation undertaking a reuse program, the
Framework must be augmented and numerous documents provide information for
such an augmentation [80][81][87][22].

Naturally, other organisations also have reuse frameworks. For instance, the North
Atlantic Treaty Organisation has published a 3-volume standard for software reuse
[82][83][84]. The volumes are entitled:

. Development of Reusable Software Components,
. Management of a Reusable Software Component Library, and
. Software Reuse Procedures.

The content of these 3 volumes is in principle harmonious with the content of the
‘Conceptual Framework for Reuse’ of STARS.

4.2 Reuse Management

Reuse involves both people and information. The Reuse Management process idiom
focuses on people. It describes a cyclical pattern of planning, enacting, and learning
(see Figure 4.2). Reuse Management incorporates emerging general theories of
organisational learning [74] that have been adapted to the reuse-based software
engineering context, The following subsections deal with managing people, but later
this chapter will emphasise the information-side of reuse under the headings of Asset
Creation, Asset Management, and Asset Utilisation,

30 Software Reuse

REUSE MANAGEMENT

. Planning

- Assessment

- Direction Setting

- Scoping

- Infrastructure Planning

- Project Planning
. Enacting

- Project Management

- Infrastructure Implementation
. Learning

- Project Observation

- Project Evaluation

- Innovation Exploration

- Enhancement Recommendation

Figure 4.2: Reuse Management. Planning, Enacting, and Learning
include the processes listed above.

4.21 Reuse Planning

The Reuse Planning process encompasses both strategic planning and tactical, project-
oriented planning within a reuse program. One key strategic reuse planning function,
which augments traditional product line planning within an organisation, is to setect
the key domains of focus for the reuse program and determine how the domain assets
will suppert the organisation’s product engineering efforts. One key focus of Reuse
Planning is the reuse infrastructure that is required to sustain a reuse-based software
engineering approach. The outputs from the reuse Planning family include:

. Plans for the reuse program, and

. Committed resources to support the projects, in terms of staff and equipment.
The five processes in planning are Assessment, Direction Setting, Scoping,
Infrastructure Planning, and Project Planning.

Assessment processes characterise the current state of reuse practice within an
organisation, the readiness of the organisation as a whole for practicing reuse-based
software engineering, and the reuse technology and expertise available. Direction
Serting processes define specific objectives for the reuse program, strategies for
achieving those objectives, and criteria for evaluating how successfully the objectives
have been met. Scoping processes define the overall scope of the reuse program by
delineating the program’s technical and organisational boundaries. The technical
scope is defined in terms of the domains and product lines to be encompassed by the
reuse program, while the organisational scope is defined in terms of the program’s
organisational context and management influence.

Reuse Framework 31

A first step in domain selection is to identify and characterise promising candidate
domains, based on the organisation’s business interests, key areas of expertise, and
existing legacy systems. Criteria for identifying promising domains include [31]:

. The domain is well-understood, and

. The domain is based on predictable technology that will not make the
reusable assets obsolete before the investment in their development can be
recovered.

Infrastructure Planning processes identify needs for various types of support that are
common among planned reuse projects, and develop plans for establishing a shared
reuse infrastructure to satisfy those needs. Project Planning processes plan the reuse
program’s Reuse Engineering projects in detail. Project Planning is responsible for
establishing specific objectives for each identified project, and for defining the metrics
to be used to evaluate the effectiveness of the projects relative to those objectives. A
variety of metrics can be defined relating specifically to assets and reuse, such as:

. The percentage of each application product that was directly derived from
domain assets,

. The number of times each asset has been reused, and

. The number of regular users of an asset library.

The final stage of Project Planning is to plan the reuse project’s resource needs,
budgets, and schedules in detail and then obtain the necessary commitment to
implement the plans. Commitment should be obtained from both higher level

'management and the technical staff members whose buy-in will ultimately determine

whether or not reuse practice is really improved by the program.
4.2.2 Reuse Enactment and Reuse Learning

Reuse Enactment addresses initiation, performance, and retirement of the various
reuse-related plans. Reuse Enactment includes Project Management processes and
Infrastructure Implementation processes. Project Management processes establish a
temporal context for reuse project activities and include the following specific
functional areas:

. Project initiation activities include allocation and tailoring of technical reuse
infrastructure capabilities to specific projects. ' :

. Project performance is where the processes being enacted are actually
performed by individual staff members.

. Project control activities intervene with project perforiiance to optimise
overall project performance relative to project objectives.

. Project monitoring activities capture information from the projects as they
are performed.

. Project retirement activities include terminating the project and archiving the

key results.

32 Software Reuse

Infrastructure Implementation processes ensure that reuse infrastructure capabilities
are established and evolved in accordance with project needs.

The goal of Reuse Learning processes is to enhance the performance of a reuse
program. The results of Reuse Learning are fed back to Reuse Planning processes in
the form of recommendations for the next reuse program cycle. Reuse Learning
includes Project Observation and Innovation Exploration processes.

Project Observation processes gather information about enacted reuse projects. A
primary goal of Reuse Learning processes is to support the evolution of an
organisation’s reuse-based software engineering capabilities. /nnovation Exploration
processes address this goal in a different way than Project Evaluation, by gathering,
generating, analysing, and testing new ideas, discoveries, and innovations to generate
recommendations for major improvements.

4.3 Asset Creation

Reuse Engineering addresses the creation, management, and utilisation of reusable
assets. Asset Management serves a brokerage role between Asset Creation and Asset
Utilisation and reflects common marketplace interactions (see Figure 4.3). In an
organisation that has a mature reuse program underway, there will likely be multiple
Asset Creation, Asset Management, and Asset Utilisation projects in operation
simultaneously.

Reuse Framework 33

. Asset Creation

- Domain Analysis and Modeling
- Domain Architecture Development
- Asset Implementation

. Asset Management

= Library Operation

- Library Data Modeling
- Library Usage Support
- Asset Brokering

- Asset Acquisition

- Asset Acceptance

- Asset Cataloging

- Asset Certification

. Asset Utilisation

- Asset Criteria Determination
S Asset Identification

- Asset Selection

- Asset Tailoring

- Asset Integration

Figure 4.3: Decomposition of Reuse Engineering. The three main
processes of engineering reusable assets, namely, creation, manage-
ment, and utilisation, are shown here with their many subprocesses.

The goals of Asset Creation are to capture, organise, and represent knowledge
about a domain, and use that knowledge to develop reusable assets. Asset Creation
can be viewed as consisting of:

1 Domain Modelling processes that characterise application products in terms
of what the products have in common and how they vary, and
2 Asset Implementation processes that produce reusable assets.

Domain models and asset bases are logically at different levels of abstraction and
serve different purposes. The primary role of domain models within Asset Creation is
to assist in determining which asset should be produced and the range of
characteristics they should support. For that reason, domain models focus on
describing the commonality and variability among systems, rather than on describing
the systems themselves. The assets that are developed using the domain models are at
a lower level of abstraction, they implement products.

Although there are many domain analysis methods {e.g., [81]{60]), there remains
little consensus on specific techniques. However, many existing domain analysis
processes have in common the following general activities:

34 Software Reuse
. Reverse engineering,

. Knowledge acquisition,

. Technology forecasting,

* Domain modelling, and

. Asset specification.

To extract expertise already encoded in legacy systems, they are often analysed using
reverse engineering techniques. Processes to support knowledge acquisition in domain
analysis can be adapted from knowledge acquisition techniques used for in-depth
interviewing in any discipline.

In order for reuse to remain viable over a period of years so that a return on the
investment in asset creation will be fuily realised, forecasting of future trends is
essential. Then an organisation can accommodate changes in a manner that will allow
smooth evolution and modernisation of assets over time. If knowledge acquisition is a
craft, technology forecasting is an art. Short term forecasts of a few months can often
be developed with reasonable confidence. Long term forecasts of several years are
difficult to develop with confidence.

After the gathering of domain information by reverse engineering, knowledge
acquisition, and forecasting, the information is integrated into domain models that can
be used to support asset specification and development. This is usuvally done in an ad
hoc manner because general methods do not adequately support comprehensive model
synthesis of this nature. Domain models need to be validated in some way to establish
confidence in their correctness and utility. Processes supporting model validation
include walkthroughs, expert reviews, and trial application of assets derived from the
models.

The goal of Asset Implementation is to produce the assets in the asset base. This
could be done by creating the assets from scratch with guidance from the domain
models as to what kinds of components should be developed. Ailternately, a company
may require that its software developers provide whatever code they develop to the
software reuse librarians so that it can be considered for incorporation into the library.
This latter case in which libraries acquire existing components is discussed in the next
sections.

4.4 Asset Management

The Asset Management processes fall into two general classes: processes that focus on
acquiring, installing, and evaluating individual assets in a library, and processes that
focus on developing and operating libraries that house collections of assets, provide
access to those assets, and support their utilisation (see Figure 4.4). Asset
Management overlaps in some ways with Reuse Management. Organisational assets,
such as plans, are generally treated as part of the reuse infrastructure, while library
support technology is generally considered the province of Asset Management. Asset
Management addresses the selection and suppert of technology that is inherently

T‘

Reuse Framework 35

asset-, library-, or domain-specific, or tailored to be so.

ENM':r

Create

Manage
I .

Figure 4.4: Managing Engineering. The reuse cycle is shown with
detail provided for the Managment phase in which Library and As-
set processes OCCUr.

Library Processes

Asset Processes

4.4.1 Library Processes

A library houses managed asset collections. A library need not be automated to
effectively manage a collection of assets and serve a useful mediator role between
Asset Creation and Asset Utilisation processes.

The goal of Library Operation processes is to ensure the availability and
accessibility of the library and its associated assets for Asset Utilisation. This can
involve a vartety of activities, such as:

. Administration and operation of the physical library facility,
. Library access control and security,

. Periodic archiving and backup of library contents, and

. Support for interoperation with other libraries.

These activities are strictly operational in nature, and organisations may consider them
to be aspects of general infrastructure. However, there are aspects of these activitics
that relate specifically to asset libraries and merit attention from an Asset Management
perspective, Some typical library user roles, corresponding to some of the Asset
Management and Asset Utilisation processes, include library data modeler, asset
cataloger, asset certifier, library operator, asset utiliser, and asset broker.

36 Software Reuse

The goal of Library Data Modelling processes is to develop a data model for
describing assets within a library. This library data model synthesises the domain
models, asset models, and assets. The specific approach is thus dependent on the
characteristics of the Asset Creation products and on the objectives of the library in
supporting Asset Utilisation. If the library's objectives are to provide a basic search
and retrieval capability for individual assets, it should suffice for the library data
model to include mainly taxonomic information derived from one or more domain
models. If the objectives are more ambitious, then the library data model must
integrate additional elements of the domain models. In addition to incorporating
information produced by Asset Creation processes, the library data model also
codifies information that specifically addresses Asset Management needs. For
example, a model could include data elements to record asset certification information
and user feedback data.

In addition to simply operating a library and making assets available within it,
Asset Management should provide a set of library services that anticipate and address
specific asset utiliser needs. Examples of these kinds of services include:

. the collection and generation of asset data in a number of different formats,
including a variety of media (e.g., paper and on-line files) and data
representations (e.g., text and executables), and

. the operation of eiectronic hot lines to accept and resolve user complaints.

Specific tools can support activities such as viewing assets, executing assets for

evaluation, extracting sets of closely related assets, and so on.

An often critical form of Library Usage Support is direct, personal assistance to
users. These consultation services can be likened to the role of the traditional librarian
in conventional book libraries. Such services can be automated to some degree, but
may be most effective when rendered in person. This person-to-person approach can
effectively lower the technological barriers to reuse that typical library software
presents to many users.

A related form of library user support services is asset subscription, which allows
users that ‘subscribe’ to a particular asset to be informed of all changes to that asset as
it evolves. The kinds of asset changes about which a user can be notified include
identification or resolution of errors, changes in classification, development of new
variations, and addition of new usage history data.

4.4.2 Asset Processes

Related to activities considered library processes are asset processes. These include
asset brokering, asset acquisition, asset acceptance, asset cataloging, and asset
certification [17]. Localised efforts may monitor asset flows, interactions, and
feedback among Asset Creation, Management, and Utilisation processes, and apply
that knowledge to work proactively with all concerned parties to improve effectiveness
in particular areas. Such activities can be viewed as Asser Brokering processes .

Reuse Framework 37

The principal goal of Asset Acquisition is to obtain assets from external sources to
support Asset Utilisation activities. Asset Acquisition obtains assets that appear to be
good candidates for inclusion in an asset library. The goal of Asset Acceptance is to
ensure that an asset that is a candidate for inclusion in a library satisfies relevant
policy, legal, and domain-specific constraints. The purpose of library policy
constraints is typically to ensure that assets in a library satisfy at least minimal criteria
for quality and suitability for use in Asset Utilisation activities. Asset Cataloging
incorporates accepted assets into a library classifying, describing, and installing them.
Asset certification goes beyond asset acceptance and puts the ‘official seal of
approval’ on an asset after rigorous testing.

Other perspectives on asset processes exist. One view emphasises actual software
rather than software-related documents and tends to call assets by the name
‘components’. In this view, the library receives from its customers and others,
recommendations for components to add to the library. A file may be maintained for
every proposed component [83]. This file would note for the component its
description, availability, and rationale for its request. The librarians evaluate each
proposal for a component to ensure that the proposer has, at least, one application in
mind, to assess the cost-effectiveness of the component, and to identify other
beneficial characteristics, such as wide applicability and low complexity.

The library acquires reusable components from numerous sources. There is no
absolute need for the library to contain a physical copy of each component. A
component would be incorporated by reference only, if it is:

* maintained and distributed by an outside organisation or

. executable code.

When a component is incorporated by reference, the library should provide on-line
instructions for gbtaining the component and documentation for the component.

The fundamental criterion for acceptance of a component into the library is cost-
effectiveness. The cost of obtaining and reusing the component must be less than the
cost of developing the desired capability directly. One aspect of a component is the
method by which it was produced. A component developed with sound methods by a
recognised team of software developers has a greater likelihood of being easy to reuse
than a component developed in some other way. No product, however, can be
considered reusable if it lacks an understandable description of its capabilities and
clear instructions on its use. If a reusable component is incorporated by reference,
quality assessment information is still required. The folder for a component ready for
accession contains considerable information. This information should include a user’s
manual, testing data, and quality assessment.

Once the necessary supporting material, including the classification of the
component is available, the librarians assimilate the component into the library and
distribute information about its availability to the library users.

38 Software Reuse

4,5 Asset Utilisation

The goal of Asset Utilisation is to construct new application products using previously
developed assets. The outputs from Asset Utilisation include:

. Software Systems and other application products that are constructed from
assets,

. New assets for incorporation into the asset base, and

. Feedback concerning the library and its assets.

Asset Utilisation generally involves determining a set of criteria to use in selecting
assets for reuse, identifying suitable candidate assets in the context of those criteria,
selecting and tailoring assets to meet the criteria, and integrating the tailored assets
with the target application.

The reuser must tailor assets that have been selected for reuse so that they satisfy
target system requirements. This tailoring generally comes in two forms, either or
both of which may be applied to any given asset:

. Anticipated Target system needs lie within the range of variability anticipated
for an asset during Asset Creation; the asset encapsulates the variability
through some set of tailering interfaces (such as parameters); these interfaces
can be used to resolve the variability to meet target system needs.

O Unanticipated Target system needs lie outside the range of variability
anticipated for an asset during Asset Creation (e.g., there is a need for new
features where no variability was anticipated); the asset thus provides no
relevant tailoring interfaces that can be applied and must be modified to
address the unanticipated target systermn needs,

To perform anticipated tailoring, an engineer must understand the range of variability
an asset may accommodate and how the asset’s tailoring interfaces are used to select
among the variations. This information should be included in the library in the form
of ‘reuse instructions’ for the asset, which may be augmented by examples. In
addition to parameterisation, another technique that can be used for anticipated
tailoring is hand modification of the asset in accordance with precise instructions. An
asset that can be tailored in this manner is typically called a template.

Unanticipated tailoring is more of an ad hoc process in which the engineer
assesses the asset’s shortcomings relative to system needs and then employs
whichever strategies are appropriate to tailor the asset to those needs. This often
involves hand modification of the asset to add desired features or remove undesired
features. Modifications may also be needed to address issues such as performance,
environment compatibility, and safety, reliability, or other quality factors.

N 2N

Reuse Framework 39

4.6 Costs versus Benefits

Software reuse is difficult for companries to initiate because it has the least desirable
cost structure, initially very high, recouping over time. Start-up costs include setting
up the software component library that will be needed, training staff to set up the
library, populating the library and training the software development teams to use the
library software and reuse the actual components. Gradual returns over the life of the
library should pay for initial costs over a period of time, and return profits, but may
not. There are other possible benefits in the quality of the software produced and
minimisation of developer time and resources, but these benefits may be difficult to
measure (see Figure 4.5).

Money

N

Cost Benefit

Y
-

Time

Figure 4.5: Reuse Costs. Initially the cost of the reuse program is
very high, as the library of reusable items is built. Returns cannot
start until the library is usable, and then will tend to be low, as the li-
brary needs to become suited to the developers who use it and gaps
in the libraries content are filled. The final level of return is uncer-
tain, it should become high and remain high, but this will depend on
the quality of the reuse library, it’s retrieval system and the willing-
ness of developers to reuse.

To be willing to provide an investment in reuse, companies will need proof of the
benefits of reuse. Some of the benefits of reuse are tangible, for example the time to
build a project should be reduced. But the way to prove that project development time
had been reduced would be to build a project using conventional means and then to
‘go back in time’ to before it was written and to create it again using exactly the same
people, without the knowledge they gained by building the system in the first case,

40 Software Reuse

with reusable components. This is of course impossible, and wouid in any case be
inconclusive since the benefits of reuse will vary from project to project. Most of the
benefits of reuse, increased quality of programs and documentation, less testing
required, fewer skills needed within the development team, and the production of
components available for future projects, are difficult to measure.

Reuse is only cost effective if it actually takes place. If on a project reuse options
are investigated, i.e. requests for reusable components are formulated and submitted to
the library system, and some components retrieved and investigated for suitability and
none of them prove suitable or none are found, then a perhaps significant amount of
time has been wasted by the developers. Also the library has failed to live up to its
expectations on this project and thus no money used to set up and run the reuse library
has been recouped. For a new library and reuse methodology unless very significant
amounts of money have been spent creating the library, then low returns on reuse
should be expected on quite a regular basis. The components created (since reusable
ones could not be found) should be used to add to the library, but this will be more
expensive than custom-creating the components for just this project,

The method used to estimate reuse costs and benefits should be compatible with
Fhe methods used by the rest of the company. The two quantities of primary
importance are:

C the net saving to the individual user for each instance of reuse of a
component and
. the net saving to the company from all reuses of the component.

The quantities in the analysis can be expressed either in some monetary unit or in
labor hours.
Benefits may be categorised as [83]:

. The savings due to reuse, Sg, is the sum of costs avoided each time the
component is reused.

. The service life, L, is the useful lifetime of the component in years.

. Demand, is the number N, of times the component is likely to be used during

its service life. If the costs and benefits may vary from year to year, then the
demand should be apportioned per year as N, wherey=1,2, ., L.
The costs associated with a component may be formalised as:

J The cost to reuse, Cg, is the cost incurred each time the component is reused,
including retrieval and tailoring costs.

. The accession time, Ty, is the amount of time between the decision to
acquire the component and its availability in the library.

. The accession cost, Cy, is the cost to add the component to the library.

. The maintenance cost, Cy, is the cost to maintain the component in the

library. Again if yearly costs vary, the maintenance cost distribution Cmy
where y=1, 2, ..., L is the cost to maintain the component for each year of its
service life,

Reuse Framework 41

Risks which might be incurred need to be estimated. These may be due to a
dependency on a particular environment or configuration, obsolence of the design or
code, and legal obstacles. These risks can be accommodated in the preceding
variables as appropriate.

The net saving NSR to the individual for each instance of reuse is the difference
between the saving due to avoided cost and the cost to reuse, or in symbols, NSR = Sg
- Cr. The total savings from all instances of reuse is NSR multiplied by the number
of reuses. Thus the net savings from all reuses NSP is the total saving minus the
accession and maintenance costs, or in symbols, NSP = (NSR x N) - (Ca + Cm).

The NSP may be calculated on an annual basis. For each year, NSP, = (NSR x
Ny} - Cpmy. This calculation assumes that the accession cost is incurred prior to the
beginning of the first year of service and is recorded separately. The cost estimation
method may include an adjustment for the fact that future cash flows decrease in value
with time at a rate that can be given the discount rate i. Thus the annual discounted
NSP can be given as

DNSPy = ((NSR x Ny) - Cpy) / (1 + 1),
To compare two potential reusable components to determine which to acquire for the
library and which not, the cumulative discounted cash flow CDCF for each would be
determined and the component would be preferred with the higher CDCF. CDCF =
DNSP; + DNSP; + ... + DNSP, - C5. With the appropriate data and these formulas, a
company can better plan its reuse investments.

Depending on the management strategy adopted by the software development
company, the costs of reuse may be absorbed by the developer in the hope of creating
similar projects later, and thus recouping the investment that way. Or alternatively the
developer may form a partnership with the client, where initial startup costs and any
later benefits are both shared.

4.7 Legal Issues

If the client of a software house is willing to allow the software house to reuse
components developed for them for other clients who need similar systems, then the
software house has more reasons to practice software reuse. However who it is that is
the owner of a component developed for a project could be a thorny issue. Does
permission need to be sought to include a component developed for a project in a
library, if that component is generic? Should commission be paid to the instigating
client? These issues may be soluble by written agreements listing terms and
conditions between the client and the developers.

Legal issues affect a reuse effort as they effect any other endeavor that involves the
utilisation of the work of others in the creation of new work. There must be clear legal
boundaries defining what is reuse and what would constitute plagiarism. Copyright
exists in most western countries to some extent, and motion pictures and books have
well defined protection in law. In nearly all countries legal protection of software is
more hazy as the law attempts to get to grips with and catch up with the technologies

42 Software Reuse

to hand.

Within the European Union moves are under way to standardise legislation
between the various member states. Computer software is generally regarded as
intellectual property and as such may be protected under patent and copyright law.
The copyright protects the expression of the software, the routines and the order in
which they are called. Whereas patent protects the industrial realisation of the
concept. That the rationale behind the software is protected by patent extends the
protection beyond simply the code to cover flow charts or pseudo code and thus
protects the author against language translation, reverse engineering and adaptation of
the code. Although under the United Kingdom Patents Act 1977 computer programs
as such are described as expressly non-patentable inventions, patents may be granted
for new and improved products incorporating inventive concepts embodied in a
computer program [21].

The granting of a patent to an individual or organisation grants to the holder
monopoly rights over the subject of the patent for a period of normally twenty years.
The criteria upon which a patent application will be granted are that it is of a technical
nature, is new and makes a technical contribution to the known art. Taking out a
patent offers greater protection to the author than is available under copyright as there
is no onus to prove copying has taken place. The major drawback is the time taken to
process patent applications and that making the application for a patent reveals to the
public the nature of the invention.

Copyright of software is a property right and means literally the right to copy the
literary or artistic work produced by the author. Literary content may refer to the
program code or documentation. Artistic work may refer to the user interface
generated by the software. Copyright more importantly restrains others from
reproducing or adapting the contents of an original work. Copyright protection is
offered automatically - by order of law - on the recording in writing (or storage in an
electronic format) of a copyright message stating ‘Copyright 1994 Our Company’.
This applies copyright lo an original work and protects against copying and adaptation
of the work. The existence of a copyright, however, does not prevent another
organisation arriving at a similar solution providing it does 50 by independent means.
In this respect a copyright, unlike a patent, does not offer monopoly rights over a
product. The copyright is applicable for a period of fifty years from the date of
publication.

For software reuse libraries bought from a vendor, the vendor’s licensing
agreement will generally include clauses amounting to non-exclusive licensing of the
software. As they are sold as reusable components, they may be incorporated into a
product which may be either for distribution within the company or to be sold as a
commercial product.

Reuse Framework 43

4.8 Impact

To successfully set up a reuse programme involves transferring research approaches
to reuse into standard industrial practices. Four main stages are identifiable in the
transfer process:

. the Audit,

. the Planning Stage,

J the Implementation, and
. the Evaluation.

The audit involves examining the current system and investigating options for
retaining parts of the existing process. This stage is especially important because for
reuse to succeed, it is, of course, important to build on any existing reuse practices,
and in any case, it is common sense to determine the current state of affairs before
attempting to change it. In any case, a baseline is required to determine whether or
not the change has been successfully accomplished, Moreover, at the start, it is
essential to determine the most fruitful areas in an organisation where people are
likely to champion reuse, or where the most benefits from reuse practices are likely to
accrue.

Once an audit has been completed, the reuse planning team should be in a position
to plan a course of action with the aim of creating a situation where reuse is standard
practice. In formulating the reuse programme plan in the areas where existing reuse
has been identified the aim should be to improve on existing practice if possible, for
example with better support.

In planning for implementation, some general consideration of the channels of
communication within an organisation may be helpful. During the actual
implementation stage, it is helpful to build on any successes in acceptance of reuse.
Strategies to achieve this include encouragement of reuse champions and
communication of best practice. As with any new practice, it is better to implement a
small but successful programme gaining the confidence of staft and then build it up,
rather than attempting to establish a more grandiose scheme and lose the goodwill of
staff. In all accounts of successful reuse, the importance of ensuring that there is
management support for the reuse programme has been stressed.

In considering the factors that influence effective reuse, attention must be given to
the process of reuse, supporting technology, potential objects of reuse, standards, and
other technical aspects. While technical issues do require attention, it has been
increasingly recognised that consideration must be primarily given to non-technical
factors such as management, scope of reuse programme, economics and, perhaps most
important, the social implications. In this context, the use of quality circles has been
reported as offering an opportunity to introduce the concept of reuse within a company
as part of a broader concern to improve overall quality of the enterprise.

44 Software Reuse

One of the main obstacles to software reuse in the large is the understandable
tendency of software producers to protect their intellectual property against
competitors to maintain a commercial advantage. The coilaboration of these
commercial entities to extend the benefits of software reuse across company
boundaries requires the existence of a benevolent organisation to co-ordinate and fund
the reuse activities, In the United States this role is played by federal bodies, such as
the National Aeronautics and Space Administration and the Department of Energy,
who actively encourage software reuse by making available to contracted
organisations reusable components produced on behalf of the federal body to all
contractors in an attempt to reduce development time for sofiware as a whole. The
initial cost for the federal body in creating the reusable components is thus offset by
the benefits incurred as the components are reused in [ater projects.

4.9 Epilogue

The themes about reuse as expressed in the Conceptual Framework for Reuse
Processes are:

* Software reuse has both management and engineering dimensions,

. Reuse should be applied as a ‘first principle’. That is, reusable product
should always be considered as the basis for work before creating new
products.

. Learning and managed change, based on measurement history, and
innovation, are essential to reuse.

. Technical, organisational, and educational infrastructure is essential to reuse,
and must be designed and managed to support it.

. The asset producer, broker, and consumer roles are important, separable

aspects of reuse that form distinctive patterns of activity within the Reuse
Engineering idiom.
The Framework is generic with respect to domains and technologies. It can be
applied in an organisation of any size, at any organisational level. It provides a basis
for the analysis of reuse processes and the definition of reusable assets.

The individual reuse processes gain synergistic value when viewed as modular
building blocks that can be used to construct a wide variety of reuse-specific process
configurations reflecting different planning levels, organisational structures, and
interaction patterns. To support the construction of process configurations, the
Framework should include a set of composition techniques to connect the processes
together in a variety of ways. These techniques provide a flexible and scalable
composition approach enabling the Framework to capture aspects of reuse-based
engineering practice not easily described with traditional software life cycle models.

Rense Framework 45

Modifying the software life-cycle for reuse involves everyone involved in the
creation of software. Formulas exist for determining the costs and benefits but
obtaining realistic values for the variables in the formula is challenging. Everyone
from developers to those who manage budgets and plan projects and even the final
customers for the programs produced will play some role in the ultimate value of the
reuse effort. If reuse is successful at a company, then everyone involved will benefit.
Developers will not have to waste time developing software repetitively and costs will
be reduced in the long term. These savings can be passed to the customer in reduced
costs, faster delivery, and increased reliability.

46

Section 2:

The Reuse Process

In this Section three phases of reuse engineering are examined. These phases are the
initial organisation of a library of reusable components or concepts for later reuse, the
retrieval of relevant components from the library, and the reorganising of these
components to form a useful system. In other words, this life-cycle includes:

1 Representation of software items that can be reused, i.e. semantic and
syntactic means or conventions for describing them - Organisation,

2 Later retrieval of these items by another developer - Retrieval, and

3 Development of software using reusable components - Reorganisation.

Document and object oriented approaches to all three phases are discussed and
compared, as are applications of both techniques to program code, and higher levels of
abstraction such as software requirements. The discussion of program document
retrieval is augmented by practical examples based on the UNIX help system and the
Andrew help system.

A major problem to be overcome in the deployment of software reuse techniques is
to identify appropriate methods for the classification and retrieval of software items.
If retrieval is not made easy for developers, they will prefer to re-write the component
from scratch. At the same time classification must be simple and cost effective to
justify the cost of setting up and maintaining the library of items against the cost of
developing the items each time from scratch. These twin aims of simple classification
and powerful retrieval are contradictory in themselves, as will be explained in this

Section.

47

5
Organising

In constructing, or maintaining a reuse system, an early step is to build a repository of
reusable concepts and components for developers to use as a resource. These
components can come from many sources (see Figure 5.1). These components need
to be processed to ensure that consistency and quality are maintained throughout the

library.

Software
House

Components in

Purchased components 0
the Public Domain

Internal componenN

Zd

Organisational
L System

Librarian

Figure 5.1: Component Sources. Components may arrive for the li-
brary from a software house, or from public domain sources, or
from projects on-going which have developed new components suit-
able for reuse.

48 Software Reuse

Organising refers to collecting, analysing, indexing and storing information so that
it can be easily accessed later. Before software documents (here documents being any
information produced during the software life-cycle, such as a piece of code or a
requirements document) can be successfully reused, they must be somehow organised
{66]. Documents that are to be reused should be organised into a carefully designed
system that reflects their topic. There are several methods for organising items. At
one extreme each document is stored in a file and an index associates strings with the
files that contain them, while at the other extreme a knowledge base replaces the
documents entirely, representing them in its structure.

5.1 Indexing

After material has been collected and analysed (as described in the previous chapter),
it should be indexed. The two most important basic approaches to document indexing
are the interpretive and structural approaches. With interpretive indexing the document
is read and understood before index terms are assigned [37]. In contrast, the
structural approach uses the frequency of word usage in natural text as an indicator of
relevance of the contents to a topic without semantic interpretation being assigned to
any word. In the interpretive approach ‘indexing concepts’ are chosen to represent a
document expressed in a natural language such as English (see Figure 5.2). The
indexers may have complete freedom of choice over what they can use as an indexing
term to represent a concept, or they may have guidelines to follow over how certain
concepts should be represented. This approach without guidelines is quick to
implement, but can lead to inconsistent indexing terms for documents in the library,
especially if the library is large, and has many people indexing components for it.

Structural indexing is based on the observation that writers usually repeat certain
words as they advance or vary their arguments, or elaborate on an aspect of a subject.
This approach has motivated a number of automatic indexing algorithms for
information retrieval systems [71]. An important automatic indexing approach is
Frequency based. A typical word frequency indexing algorithm is to

| Identify all the unique words in the document set.

2 Remove all common function words included in a stop list (such as ‘a’, ‘the’,
‘or’, ‘and’, ‘is’, ..., etc.)

3 Remove some suffixes and combine identical forms of the same word

(stems). This reduces a variety of different forms such as ‘constructs’,
‘constructing’, ‘constructor’, and ‘constructed’, to a common word stem

‘construct’.
4 Calculate the frequency of occurrence of the resulting word stems.
5 Assign a mid-range of frequencies for terms to be considered for indexing.

Organising 49

6 All terms that are within the mid-range are then selected as indexing terms.
Frequency-based indexing generates a flat description, i.e. a frequency ordered set of
unrelated index terms for each document. A more sophisticated indexing mechanism
can identify the relationships between the co-occurring index terms.

"Computer Aided Instruction (CAI) systems
have improved greatly over the years. Their
knowledge content is still however low, and
the system decisicons, though usually correct
cannot be analysed for the reasoning behind
them. Knowledge can be stored in the domain
of a learner model in a variety of ways, and
thus a student may have to acquire knowledge
using several different methods”.

Possible indexing concepts:
Computer Aided Instruction,
knowledge content,
learner model.

Figure 5.2: Keyword Approach. A list of concepts to index this
paragraph.

5.2 Document Qutlines

Successful interpretive indexing requires understanding a document’s content. A
document’s outline may provide a valuable guide to this understanding. Most well
prepared documents have an outline. The outline manifests itself in the layout of the
document as highlighted and numbered headings in the document body, as well as in a
separate listing at the beginning of the document in the ‘table of contents’. This
physical layout helps people understand the logical structures of the document and
find thematically-organised sections in the document. This means that there is an
existing organisation of themes (or sort of domain model) in the document which can
be easily observed and perhaps utilised in organising the document for reuse systems.
Analysis of the outline provides a quick and simple insight into the content of the
document. Tools can automatically extract an outline from a document and thus split
documents into themed sections, showing the relations between these sections (see
Figure 5.3).

Obviously the size, balance and depth of this structure varies from document to
document, There are no strict rules for the construction of headings or outlines, though
some patterns in headings do exist. In many cases, headings are noun phrases, such as
‘Introduction to Database System Concepts’, ‘Physical Data Organisation’ and

50 Software Reuse

Software Engineering
Book

Ch [: Basic Concepts
What is software ?

etc.

~ Basic
: ©- Concepts
What is software Engineering
Software
Specification

Ch2: Software Specification
Reguirements Documents
Modelling Requirements

Software
Engineering

Ch 3: Software Design
Top Down Design
Bottom Up Design

Software

Ch 4: Sofiware implementation Smplengtilion

Design
Testing elc.
" Ch 5: Methodology : : .
elc.
Meithadalogy
elc,

Figure 5.3; Qutline Analysis. By analysing the hierarchy of the out-
line of a book it may be possible to automatically break the book in-
to domains.

‘Protecting the Database Against Misuse’. But headings may even be complete
sentences, such as ‘What Makes Interlisp Unique?’. The heading of a section should
briefly describe the contents of that section, and headings can be seen as ‘content
index” terms for a document. It follows therefore that one may extract index terms
from the headings to represent more generically the sections under those headings.
For example, both ‘The Network Model’ and ‘The Relational Model’ may be indexed
by the key word ‘Model’.

In many documents, some subheadings inferit attributes from their parent heading.
For example, the heading ‘Hardware’ under ‘Site Requirement’ means ‘the site
requirement on hardware’. This dependence may continue on several levels. In some
scientific documents, headings repeat. Documents of a given type, such as
requirements documents, may all have the same outline. Some company policies
require such conformity of outlines. Furthermore, the documents of a given software
life-cycle fall themselves within a kind of high-level outline whose headings may
show some relationship across documents (see Figure 5.4).

Organising 51

‘When one studies the nature of the relationship between headings in an outline one

observes three kinds of relations, structural, hierarchical and attributive [46].

. The structure relation refers to parts of a document outline which are not
fundamental to the major topic of the document but serve rhetorical or
record-keeping functions. For example the title of the document connects to
the ‘Introduction’ heading via a structure relation, and the ‘Date of Creation’
heading has the same link from the title.

. The hierarchical relation includes the traditional partitive (a part of) and
inheritance (kind of) relations. For instance, the link from ‘Function’ to
‘Subfunctionl’ would be of the hierarchical type.

. The attributive relation is a non-hierarchical relation. For instance, if the
section headed ‘Function’ includes subheadings ‘Inputs’ and *QOutputs’, then
the relation from ‘Function’ to these subheadings would be attributive.

Such a characterisation of outline relations can greatly facilitate the manipulation of

outlines. These outlines are not, however, as frequently used in supporting reuse as

they might. Some outlines are not sufficiently well organised or descriptive to guide
reuse, so additional effort is needed to abstract the contents of these documents and to
represent that information in easily manipulable ways.

D

Requirements

Function
Subfunction|
Subfunction2

Hardware

l

Design

Subfunction |
Subfunction 2

Installation
Guide

Hardware

Figure 5.4: Relations among Qutlines. Each box represents a docu-
ment of the software life-cycle whose title is indicated in its upper
left corner. The arrows show how a heading of a document in one
phase of the software life-cycle can be related to a heading in anoth-
er document of the same software life-cycle.

52 Software Reuse

5.3 Domain Models

A high-level organisation of an information space may be reflected in a model of that
space. Given that the information space addresses a particular topic or domain, the
model could be called a topic model or a domain model. A domain model should
identify the objects and operations on those objects that are common to an application
domain. Also important are relationships and constraints between the objects and their
corresponding properties or attributes, that are likely to be used by developers in the
process of searching for reusable components - these must be made explicit.

One part of a domain model may be a classification. A classification groups
together like things [59]. An enumerated classification scheme [69] assumes a
universe of knowledge divided into successively narrower classes that include all
possible classes (See Figure 5.5). These are then arranged to display their hierarchical
relationships. An example of this scheme is the Dewey Decimal system.

5.3.1 Thesauri

The enumerated classification has little flexibility, as it is usually represented as
simply a strict hierarchy of terms with no further attributes and no term occurs in more
than one place in the hierarchy. A thesaurus extends the enumerated classification by
allowing a few other attributes for each terms, in addition to the attribute of
hierarchical location. A thesaurus may be presented in a hierarchical, ‘Table of
Contents’ form or as an alphabetical sorting. It includes preferred terms (descriptors)
for indexing, and non-preferred terms as lead-in terms {or synonyms) to corresponding
preferred terms. The preferred term essentially labels a concept. Two basic
relationships between concepts are hierarchical (broader than, narrower than) and
associative relations. Several other attributes for a thesaurus term can be defined,
including dates of entry (see Figure 5.6).

A thesaurus supports organising and finding documents in both object- and
document-oriented systems (though in itself it is object-oriented). With a thesaurus
one document can be indexed under several terms. A user can broaden or restrict the
results of his or her search by asking the system to refer to the thesaurus. Thus the
thesaurus provides the retrieval system with some natural language ‘ability’.

Thesauri are normally part of a larger system and are best built with regard to their
function in that system. It is possible to build a thesaurus first and then use it to index
the documents to be added to the library. This is described as a top-down approach. To
do this requires an amount of prior knowledge of what the library is likely to contain,
Alternatively, in the bortom-up approach the documents may be indexed using free
terms and then the thesaurus is constructed after accumulating a number of these free
terms. Consistency must be maintained in the terms used and their structure as
preferred and non-preferred terms. When the function required of the thesaurus is

Organising 33

Computer Vision

Computer

Science Code
ete.
Science etc,
Mammals
Biology etc.
Sight B

Figure 5.5: Enumerated Example. In this greatly simplified classifi-
cation scheme of the sciences, an enumerated classification scheme
has been imposed. For many cases this is perfectly adequate. How-
ever if the topic ‘Biological Paradigms for Computer Vision’ had to
be classified the system fails, since this topic is equally relevant at A
and B in the above classification.

Attribute Value
Froferred Term Srakes
Definition

Date of Entry June3 1982
Tep Term Animals
Broadar Term Raptiles
Narrower Term Rattlesrakes
Assoclated Terms Worms
Synonym Vipers

Pricr Term Serpents

Figure 5.6: Thesaurus Terms Table. This shows the terms associated

with the preferred term ‘Snakes’. Top terms represent main classes

in a classification system, in this case the main class being ‘Ani-

mals’. It is also possible to define a relationship between prior des-

ignations for a concept and its current namings, in this case ‘Ser-
| pents’ as an older naming for the concept of ‘Snakes’. In software
documents this is useful for version following.

retrieval, as it largely is in the software reuse world, the best method for building the
thesaurus is a mixture of these. The drawback of using thesauri is the effort needed to

54 Software Reuse

build and maintain them.
5.3.2 Faceted Classification

A thesaurus basically provides a hierarchy of concepts with little other information
about each concept than its hierarchical position. To extend the thesaurus, one may
expand the representation of each concept in it. A faceted classification is a kind of
extended thesaurus. Faceted schemes are easier to expand than enumerative schemes.
They are more flexible, more precise, and better suited for large, continuously
expanding collections. A software component may be described by a set of {facet,
facet term} pairs:

. A facet is a fixed set of concepts from which to view components.

. A facet term comes from the library’s list of representative terms for the
particular facet.

. Any number of pairs may be applied to a given software component.

Typically a domain will have about ten facets.
A typical set of software facets might include:

. object: a software engineering abstraction operated upon by the software
component,

. function: an action performed by the component, such as sort or delete,

. algorithm: any special method associated with a function or method, such as
{algorithm, bubble} associated with {function, sort},

O component type: the particular kind of software life-cycle product, such as
code or design,

. language: the language used to construct the component, such as Ada, C, or
English, and

. environment: any hardware or software for which the component is

specialised, such as Unix.
A component is described by assigning appropriate facet terms for all applicable
facets.

A description for a sort routine might use the facet ‘object’ twice but the facet
‘environment’ not at all (see Figure 5.7). In a more flexible sort routine, the facet
‘object’ has disappeared, since the object to be sorted is a generic parameter of any
type. This example also illustrates that more than one facet term may be given for a
single facet. Thus the user who has an application-oriented view might be served
equally well as the user who has a software-oriented view, if the librarian has put both
an application-oriented facet term into the facet and a software-oriented facet term
into the same facet.

Organising 55

Facet Facet Tam

Name Rigid Component | Flexible Component
cbject addrese

cbject mail code

funection gort sort

algerithm birary sort binary sort
component type | code code

EBnguage Ada Ada

Figure 5.7: Descriptions of Sort Routines. The facets for two dif-
ferent software components, called Rigid Component and Flexible
Component, are given. Note that the ‘Flexible Component’ does
not use the facet ‘object’.

5.4 Code Organisation

Reuse of code, usually in very informal ways, is almost as old as programming itself.
All high-level programming languages are in themselves a kind of code reuse system.
They provide a method of manipulating the hardware at quite a high-level which
reuses large amounts of very low-level code in each instruction. Some aspects of
operating systems offer a similar function. Libraries of functions in high-level
languages continue this abstraction a level higher. Systems like the UNIX pipe
function (which is described later in this book) extend this abstraction to include reuse
of whole programs typically themselves written in a high-level language using sub-
routines. Newer languages, such as object-oriented languages like C++, and generic
functions and packages in ADA, provide powerful facilities for the programmer to
make abstractions.

Code that is to be reused can vary in size from a small block of code, of say a
dozen lines, that performs some minor function, to a procedure of thousands of lines
that performs a complex operation. There are problems and advantages to reusing both
sizes of object. Smaller components are less productive since their functionality is not
as great due to their size, but are easier to combine and modify to achieve a different
goal from that originally intended, since they encapsulate a single function. Functions
can, however, be expected to receive and return their parameters differently, both in
number, format and type. Using small functions means that these ‘structure clashes’
will occur more frequently, since there will be a greater number of individual routines.

56 Software Reuse

PACKAGE int_gqueue (parameters ... }

-- --Description--

-- AUTHOR: D. Chaplin

-- DATE: 28th May 1992

- NAME: int_gueue

- COMPANY: NKM_Software

- VERSION: 4.2

-- FUNCTION: A variable size queue for
-= integers.queue is a first-in-

-- first-out {or FIFO)

- data structure.

-- --Classification--

- CATEGORIES: Data Storage,

- Abstract Data Type.
- KEYWORDS: queue,

-- first-in-first-out,
- data storage.

e --Storage Requirements--

-- MEMORY ALLOCATION: as needed.
- --Dependencies--
-- LIBRARIES: needs math.lib.

-- *%* Dafinitions ***

end int_gueue;

Figure 5.8: Component Code. A sample piece of code to show how
keywords can be considered to exist in ordinary code.

Keyword-based approaches to indexing programs are similar to those used for
documents, namely that an indexer uses a natural language, such as English to
describe the content of a component. Indexing terms could be added to the start of an
actual program code component (see Figure 5.8).

A form of outline-extraction may be possible for a well-commented program. The
comments might include headings in a way analogous to the headings in a
conventional document. However for many programs, their existing comments are not
written to this standard, It should be possible to add comments to the code to achieve
this, although this would be time consuming and therefore remove many of the
advantages of using this method.

Object-oriented software is widely seen as a possible major contributing factor in
the wider acceptance of software for reuse (and was briefly discussed in the chapter on
the software life cycle). This is due to features of object-oriented languages such as

L e

Organising 57

data encapsulation and information hiding, which reduce or eliminate much of the
effort involved in making components suitable for reuse. In recent years several
object-oriented languages have appeared, for example Smalltalk 80, together with
object-oriented extensions to some existing functional languages, such as Object
Pascal, Objective C and C++-.

Object-oriented programs are made up of interacting components called objects.
These objects may correspond to real world entities i.e. bank accounts, or to computer
hardware and software components. Others may correspond to data structures such as
lists, stacks, and queues. Software construction using object oriented languages is the
assembly of objects to form a system. Each object is by its nature well defined since it
implements a real world ‘object’ and its scope is fixed and defined by a real world
entity. Object-oriented programming encourages programmers to assemble complex
programs from simpler components.

With object-oriented document classification schemes, domain modeling is
important, this is also true in object-oriented program component schemes. Program
components are described in a subject-oriented hierarchy depending on the functions
offered in the program component. The domain mode! can be refined to several levels
of granularity, at the finest level this should lead to subclasses that contain program
segments which are different versions of the same program segment or functionally
equivalent program segments,

5.5 Epilogue

The way in which software information is organised in a library is crucial. It
constrains how the developer may use the library. Techniques for the organisation of
components may be document-oriented or object-oriented.

The document-oriented approach relies on the extant structure of documents and on
free-word indexing. A document-oriented system is easy to set up and offers many
methods for organising documents fully or, at least partially, automatically. But
document-oriented methods are weak in many retrieval situations, since the
information they provide about the structure of documents and the structure into
which documents are organised is quite simple. Only basic retrieval methods, such as
searching for topics explicitly mentioned in a document, is possible. Automatically
extracted information is usually a subset of the information stored in the document,
and thus offers less information about the documents than the documents themselves
and only weak associations between them. This can be improved by human indexers
reading the documents and assigning keywords to describe the contents of the
document, but it is hard for this indexing to be kept consistent over large databases of
thousands of documents, or with several indexers working simultaneously. This causes
many problems at the retrieval stage, which are described in the following chapter.

58 Software Reuse

Object-oriented systems basically depend on some form of high-level abstraction
or model, commonly called a domain model. Object-oriented techniques are labor-
intensive for the set-up stage. However a rich structure is produced that can be
interrogated in many ways and provides many advantages to a searcher. A thesaurus
provides a system with some basic knowledge of a domain, thus allowing ‘intelligent’
searches which find documents using terms related to desired terms rather than simply
failing. The emphasis can be on making retrieval easter, at a cost of making
organisation more complex, time-consuming and expensive. Or the opposite, where it
is retrieval that requires expertise and may prove unproductive, but organisation is
simple.

B

59

6
Retrieving

Before a developer can write a program using reusable components, the components
to be reused must be obtained. A reuse library will not be used effectively, if it is not
relatively easy for its users to retrieve the desired information from it. Users must be
allowed to be flexible in how they search for information. If the library is searched
with a specification or partial specification of the required component, then the system
should be able to determine how much of that specification can be met by copying and
combining existing items from the library, in an ideal case at least. In a situation
where the library does not contain the desired information on a particular topic, the
user should be able to browse for and examine any possibly related components in the
library (see Figure 6.1).

Library

User %) e
Software Developer
Exact Parﬁat}
Full e
Specification l\Ellf']ll:l:]h [ggjl
. Spec.] Browse)
Browse

Library System

Software Components

Figure 6.1: Flexible Searching. In this system 3 avenues of explo-
ration are available to the developer, he or she can pose a query as a
‘Full Specification” of the component, part of that specification a
‘Partial Specification’, or by ‘Browsing’ through the components
that exist in the library.

60 Software Reuse

6.1 Retrieval Specification

As described earlier, the software life-cycle can be viewed as a refinement process,
which starts with the developer having only very informal and abstract specifications
of what the final product should look like. Unfortunately it may be important to know
in the early stages of this process which reusable components are applicable, since
existing reusable items can only be integrated, if the system is designed to
accommodate the reusable items. However, at these early stages, the user of the
library might have difficulty expressing what precisely is required. Despite the
vagueness of the retrieval specification, the resulting search of the library should lead
to helpful information. The developer should be able to progressively modify the
query as retrieved items add to their mental model of the library contents. This can be
called iferative searching or browsing (see Figure 6.2).

Library
of components

1st Searc%
D D 2

Retrieved
Components

2nd Search [Information

tser > Retrieval

af System
iy SO |
Retrieved |
Components

Figure 6.2: Ilterative Searching. This is a description of a technique
in which the user poses an initial query to the library retrieval sys-
tem and uses the results returned by this query to formulate a new
and more detailed query. This is then used to query the system, and
this process can then be repeated.

Retrieving 61

With a thesaurus-indexed collection, if the user asks for document components
about for example ‘depth-first traversal’, and if the system has no document
components indexed with that term, then the system might find the term closest to
‘depth-first traversal’ in the thesaurus and perform retrieval on that term. For instance,
if in the thesaurus ‘graph algorithms’ is a broader concept than ‘depth-first traversal’,
and if the retrieval system has document components indexed under ‘graph
algorithms’, then the system should return those document components to the user
(see Figure 6.3). Thesaurus-aided searching may need to be complex {46]. A
developer may need, for example, a multiplication routine. Multiplication can be
performed (as it often is in very low level languages) as a series of shifts and
additions, Normally shifting and multiplication would not be synonymous, and thus a
compenent on shifting would not usually be offered to someone who searched for
multiplication. This is a simple example and in this case many developers could make
the link themselves and submit searches for shifting and addition components
themselves. However in the general case it would be hoped that retrieval systems
would be able to decompose a search in that way. From even these simple examples it
can be seen that the demands upon the retrieval mechanism to be used for software
reuse are many and varied.

6.2 Document Retrieval

Document-oriented retrieval approaches include searching for key terms expressed in
a natural language, such as English. When a large library containing many thousands
of items is indexed by more than one person the terms adopted can become
inconsistent. This inconsistency of terms chosen to represent components can lead to
different keywords being used to represent the same concept in two components.
Problems may also exist in searching the library for very common phrases like
‘system’ that may have been used as an indexing term for very many unrelated items.
Efforts can be made to help this situation if careful controls over the indexing terms
are exercised.

The keyword form of Information Retrieval is widely used in Japanese software
houses, where reuse of software components is an integrated activity in software
development. The stored components are indexed manually using keywords covering
the technical or application-oriented aspects of the component. The tools applied for
retrieval are very simple [42]. Much of the success enjoyed using this informal
method is due in part to many specific Japanese social and working conditions, rather
than their implementation of this method. The Japanese use training procedures
encouraging software reuse and standardised methods for software description and
development, in addition most Japanese software houses enjoy only very small staff
turnover with the result that informal contacts with fellow employees allows useful
components to be found without relying solely on the retrieval system.

62 Software Reuse

Request

Depth First
Traversal

Depth First
Traversal

Thesaurus

w0

Reti:'er:fd ; "Depth First raveral

Broader }{ Graph
Term Algorithms
m—
Graph \

Algorithms

Text

j
®

Maich

IR System

Figure 6.3: Guaranteed Return. The user has requested text on
‘depth-first’, and the thesaurus has been followed to find related
text.

Free-text retrieval requires that the user knows, or is able to determine what free-
text term would represent the document for which he or she looking. This approach
will fail to find documents which are relevant but use a different term, such as
‘sorting” and ‘ranking’ (unless good thesaurus support is given, which due to the effort
required to maintain thesauri, in some ways defeats the advantages given by using this
method).

If the system is using the concept model described in the previous Chapter, then
techniques for finding documents can use the attribute values stored for each of the
components. These attributes and their values carry more information about a
document than a simple list of keywords. They give not only an indication of what
subjects a document is discussing, but how those subjects are relevant to a topic (see
Figure 6.4). This kind of linking among concept models is especially important in
situations where hundreds of documents are available and many thousands of links are
possible.

A retrieval system should not produce a bewildering selection of topics from
which to choose at any point in the process of traversing a thesaurus or hierarchy of
classes. The number of sub-classes from which the user is to choose at any point
should be limited to an acceptably small number, ideally about twelve.

Retrieving 63

The thesaurus can be further exploited to aid the user in searching. Starting at the
root nede of the thesaurus, the library system may ask the user a question, defined by
the indexer, about their desired document. From this the system can determine which
branch to follow from that node. By repeating this process the system can traverse the
thesaurus and find the desired concept under user guidance [72). To apply this method
requires a well structured and understood domain, like mathematical applications, for
which a comprehensive set of questions can be defined to guide the system, and for a
human indexer to take the time to create all the questions, and to ensure that if the
addition of new concepts requires a restructuring of the thesaurus that the questions
are still valid in relation to the new structure.

6.3 Program Retrieval

Several methods for the retrieval of software documents have been discussed above.
Next methods that can be used to retrieve existing code are outlined. Some of these
approaches are similar to those for retrieving ordinary documents, but there are
specific constraints to take into account when retrieving program code.

The simplest technique for specifying a search is by using a small piece of code
that the developer would expect to find in the target routine, such as an Ada statement
or a list of commands that are expected to be in the program. This is in many ways
analogous to full-text searching for code. The string may need to be exactly specified
or in a more sophisticated system wildcards may be allowed, for example
printf (*%f*) may find all programs that contain the command printf with a
floating point number regardless of the other parameters used in each case. This
searching method makes it difficult for the library to find related components without
some automatic way of generalising from such a precise definition. It is more useful,
particularly in the early stages of the software development life-cycle, to use a less
specific representation, one which can describe a component in terms of what it needs
to be able to do rather than how it could be able to do it.

Formal methods for specifying the semantics of a software item include the Z-
Schema or the Vienna Development Method. Unfortunately there are many varying
metheds, none of which is especially prevalent or standardised, therefore a library
could not be designed to support all of them, or any particular one without restricting
developers. Also specifying a component in terms of its semantics can be a time
consuming and tedious task, and still requires a very good idea of the function of the
component. But, a specification of this form is in a language independent form, and
thus can be used to search a library which contains components in more than one
programming language using a single retrieval system, even though of course a user of
the library will only very rarely be in a position to be able to use a component
regardless of its language.

64 Software Reuse

Archivers MPEG T

by Mick by June
Contents

Contel'fts T-¥ Media

Lhare Linked by e
Key compression o Vines
Compression Keywords
Keywords Compression
files, Huffman Pictures

Dynamic . .

Interfaces Linked by video.

by Rebecca

Contents

Discussion

Key

Novel

Interaction

Keywords

Video, audio,

gestures.

Figure 6.4: Concept Model Links. This diagram shows three con-
cept models. A plain text system would link all three with equal
weighting. The links can be seen to be accurate as there is a logical
‘chain’ of topics from ‘Archivers’ to ‘Dynamic Interfaces’. Al-
though compression is significant to the ‘MPEG II' Model, it is a
sub-issue of dealing with motion video. In the ‘Archivers’ Model it
is central. Similarly the ‘MPEG II' document though relevant, is not
as relevant to ‘Dynamic Interfaces’ as a document about ‘Novel In-
teraction” would be. This difference in emphasis is important.

With programs, domain analysis should ultimately lead to sub-classes that contain
programs which are different versions of functionally equivalent programs. Even with
well defined sub-classes which would often be hard to achieve in practice there can be
problems comparing the programs in a sub-class. Two dummy package headers for an
abstract data type will be used for an example (see Figure 6.5). These two packages in
an Ada-type pseudo language define some abstract storage mechanism called a ‘box’
and allow some operations to be performed on that ‘box’ to move ‘item’s from box
to box. The two packages are similar but not the same. One package does not offer a

Retrieving 65

‘MOVE’ command, to move an ‘item’ from one ‘box’ to another. However the two
packages are functionally equivalent since the user may simulate a ‘MOVE’ by
performing a ‘COPY’ on the ‘item’ to be moved and then ‘DELETE’ on the original
‘item’. A search by a library user for an abstract data type of this kind should retrieve
both of these items. In larger and more complex programs the commonality between
two routines or packages may be considerably more subtle.

(1}
package an_ADT is

-- Available types are.
type box is private;
type item is private;

-- Available functions are.

procedure MOVE(item, box, box);

-- Move an item from one box to anoth-
er.

procedure COPY (item, box, box);

-- Copy an item from one box to anoth-
er.

procedure DELETE(item, box):

-- Delete an item from a box.

procedure CLEAR(item, box);

~~ Clear an item in a box.

end an_ADT;

(2)
package another_ADT is

-- Available types are.
type box is private;
type item is private;

-- Available functions are.

procedure COPY(item, box, box};

-- Copy an item from one box to anoth-
er.

procedure DELETE(item, box);

-~ Delete an item from a box.

procedure CLEAR{item, box};

-- Clear an item in a box.

end another_ADT;

Figure 6.5: Package Headers. Two basically functionally equiv-
alent, but differently specified components.

66 Software Reuse

There is a minimal model of the data types that can be defined for both routines
(see Figure 6.6). This model outlines a specification for all items in this sub-class of
components. The user of the library then searches with a minimal model specification
and the library retrieval system matches it with the stored model for that sub-class.
This is sometimes called the ‘Family Interface’ method (following [54]) since the
minimal model provides a common interface to all the programs in a component
subclass or ‘family’. However the user of the library has to be able to define a
minimum model of the desired component.

package generic_type_ADT is

type box is private;

type item is private;

procedure COPY (item, box, box);
procedure DELETE {(item, box}):
procedure CLEAR (item, box):;
end another_ ADT;

Figure 6.6: Second ADT. This specifies the minimum or family in-
terface for the two components.

Retrieval systems may utilise ‘grammatical’ slots for software [7][52). One
example of these ‘grammatical’ slots for software includes [73];

. Actions (what the component does) for example Sorting;
* Nominals (what the component does it to) for example Linked Lists;
. Modifier (any particular way in which it does what it does) for example

Bubble or Exchange (sorting).

An indexed software component is found by describing its characteristics according to
these slots. For example a string searching routine might be found by the user entering
the modifier term ‘£ind’, the nominal ‘string’ and action ‘search’. A database
of this kind can be supported by a thesaurus of all the possible terms that can be used
in a slot. A grammar specifies how the terms may be used in combination, to avoid
nonsensical searches. These systems are useful in that they are structured but do not
require that the user specify queries in a complex formal language.

6.4 Retrieval Systems

Many software document retrieval systems exist in the form of on-line help systems.
These systems typically lack a faceted classification or domain model but do illustrate
powerful features of document-oriented systems. The UNIX and Andrew help
systems are next described in terms of their retrieval support.

Retrieving 67

6.4.1 UNIX man Command

Every major command on a UNIX system has an associated man page which

describes its function [38]. These entries vary in size between one and several pages

and are all stored in a standard format to make retrieval of specific information from a

docuoment easy (see Figure 6.7). Users may retrieve these ‘man’ pages in many ways

depending on how man is invoked at the command line:

. Print or display the one-line description accompanying a set of manual
entries specified by a keyword. For example, man -k initialisation
lists all one-line manual entries relevant to ‘initialisation’.

. Print or display the one-line description accompanying a specific command
specified by name. For example, man -f 1p gives all the one-line manual
entries relevant to the ‘Ip’ command.

. Print or display the whole manual page specified by name. For example, man
cat gives the manual page or pages for ‘cat’ .

Any term mentioned in the main title of a help file of a utility can be used as a search

term. There is also an option to search for a keyword in a specific section of the man

page, for example to search for printer settings in the *External Influences’ section.

This is a very useful system for experienced users, but not for beginners or people
who are looking for a new command, since it demands that the user knows quite
specifically what they are looking for before they can find it. If the on-line help does
not contain an entry on a particular topic, then the user is simply informed there is no
manual entry corresponding to that topic, and no help is given to enable the user to
find a related or equivalent program held in the system.

642 The Andrew Help System

The Andrew help system is part of the Andrew Toolkit [53]. The Andrew Toolkit
provides a total environment for the integration of diagrams, animations, raster images
and other multimedia elements, the sending and receipt of multimedia mail, and the
easy creation of new Andrew packages, seamlessly in one user environment built
under X Windows on UNIX. The Help System is designed to support the user more
comprehensively than the basic man command. The system is set up to provide help
on any of the programs that make up the Andrew Toolkit or the underlying UNIX
system. To get help on any topic in the system the user first types the command:
help

which displays a window (see Figure 6.8) listing the main programs on which help is
available in the right side of the window. This list can be expanded to list all the
programs for which help can be found by selecting an option from the menus,

Help can be found by using a specific word which describes something the user
wants, such as ‘Bitmap’, or a specific program, such as ‘ez’. The system can also
maintain a history of the help requests made by the user (see Figure 6.9). This allows
the user to backtrack through the help screens they have accessed and thus follow-up

N i

68 Software Reuse

name_of_prog(l)
nama of_ prog(l)

NAME
name_of _prog - one line description of how the program
works.

SYNOPSIS
nanme_of_ prog (-optionl -option2]

DESCRIPTION
More detailed textual description of the program and its
options and how these options affect the use of the pro-
gram.

OPTIONS
-optionl describes the effect of this option
-option2 describes the effect of this option etc.

EXTERNAL INFLUENCES
How other programs, and global enviromment variables af-
fect the operation of this program.

EXAMPLES
{of use of the program) To do such a thing use :

name_of_prog -optiona

WARNINGS
List of known problems or bugs with the software.

FILES
What ancillary files are needed to run the software, or
are used or expected by the software.

SEE ALSO
Related programs which also have man pages, these are
typically the programs which affect the ‘External Influ-
ences’

Figure 6.7: Sample Man Page. This shows a generic description of a
typical UNIX man page.

keywords or return to previously viewed information.

This system better supports the user than the standard ‘man’ command, since the
users are choosing a subject they require from a list of meaningful options rather
trying to guess at what might be the correct term. There are overview documents that
can give the user an overview of what each available topic is, rather than the user
having to wade through a series of entries to find out whether it is like the one line
description. The system also incorporates manual pages defined to a strict format

Retrieving 69

be highlighted with the mouse and the system will attempt to find an entry explaining
that term.

A similar program, called ‘xman’, has been developed for the standard UNIX
system. It too lists all the available commands, but this command is in addition to and
optional to the standard ‘man’ system and not the de facto system as ‘help’ is for
Andrew, as well as providing fewer features.

N
help Search Print Cther Panabs Window Mne..

help fuse/localfandrevihelys o help

A Gualded Tear of Andrew

Weleane to the Tour of Andrew Twﬁmhdmmumﬂemwl
genersl toar of the Andrew system. If pou have never used Andeew, you should read
the text fve paragraphs. 1f you have uced Andrew before, go on to the rection called
Haow ta see more help documints below.

Por those whe have mever used Andrew. The information you are reading
appeans inside & wAndow that contains help information. The mouse 1 the
fmallbax sitached by a card ts the workstation. When you move. the mouse,
the mouse curver (KTow) vo the screen will move You should move the
mouse curior into the Help window containing this information new.

] To see moce of this taxt: Move the moure cursor inte the vertical bar at the
left edge of the Help window. This vertical bar Is the sorelidar - To move
dowa tn the text, click the lefi mouse butien To meve up, click the right mouse
‘uttan when te curanr i in he scrollher. The whole serelbar represents the
text; the white baxin the scrolibar represents the part of the text that I shewm
on the screen

N SR

R e S I

To vse the memt: Most windows contai sets of wenns , Chooting sptions
from these mens allows youto change your vork or to use varlous festires of
aprogram. On 4 two-bulten souse, press and hold down both moure buttons
2 couse the mengs to uppear. (On & twee-butien mouse, press and hold
dovwm the midde mouse butien.} Ta chosse * menu option, kzep the butten(s)
pressed while moving the cursor to the menu ftem yeu want. When the menn
et becomes darkened, let go of the button(s} to chocre &t

How to see more help doowments
There are three waps w sk Help to display different documents. The

|

Figure 6.8: Andrew Help Screen. This screen shows the large left-
hand window which displays the help page for the users chosen top-
ic, here the start-up contents of ‘help’. On the right are two smaller
windows showing document titles on general aspects of the system
in ‘Overviews' and a list of the programs available under Andrew in
‘Program’.

6.5 Monitoring Retrieval

If items retrieved from the library are separated into ‘relevant” and *non-relevant’ sets
(see Figure 6.10), then Recall and Precision may be defined:

. Recall measures the ability of a system to retrieve relevant documents,
. While conversely, precision measures the ability to reject non-relevant
materials.

70 Software Reuse

3 help jusc/localjandrevshelpfaap. belp

halp Ssarch Primt Oowr Pamsls Window Mo

i Zp: A Drawing Viever and Editor
g What Zip s

% Zip Is » program for creating and viewlng drawings. You can upe Zp as

$tand-~slone program o7 you can inchude Zp Invets in text docznents or tables,
For more informaticn on crexting and editng 2p o3 an Inset, tee the sess
help document.

5 This Hedp docuanent conslsts of the falowing parts:
Startng 2tp
Prepasing to draw
The pane snd the palettes
The Zp Sgure types
Entering Compose Mode
Drawing (generdl instructions)

gures

Drawing each Aqure type (speciic hstructions)
Sefecting, meving, Guplicating and deleting sl Agure types

ung editing cech Bgure type
Saving and Quttng
Previewing kad
Using the Grid and Coerdinate spitem
Changing your view of the. drawing,
Using the background and paging (catures
Pop-Up Menn Meanings
Preferences

Recent Changes
Related Tanks

Figure 6.9: Andrew Help Screen 2. This shows the history window
in the bottom right hand corner, showing the programs on which the
user has sought help.

Alternatively, recall can be viewed as sensitivity and precision as accuracy.

A good system is one which exhibits both high recall and high precision. A
mathematical model of recall versus precision has been described and can be used to
quantify the trade-off in recall and precision [24]. In general most systems with high
recall have low precision, and most high precision systems have relatively low recall.

The size of a library relates to its value. The larger the stock of a library the more
likely the library is to contain the desired component. The retrieval effort pays off
more often and thus is more likely to be used by developers to find components. The
larger the library is the more it will cost to build, but use of the library will be more
cost effective due to cost savings resulting from reusing components. There must be a
trade-off between these requirements. Policies can be defined for adding components
to the library. The library retrieval system could be set up to monitor requests for
components and produce statistics for the rate of retrieval for each of the components
in the library. This will show which types of components are the most useful in the
library and thus should be updated or expanded. If the library system also produces
statistics based on components that are requested but do not exist in the library, the
library organisers could menitor which components should be added. If a well
organised method is used to search the library, the failed searches could provide
detailed specifications of needed components.

Retrieving 71

Total Retrieved Items

e e Non-
. Relevant Relevant
Gl Items Tterns
Freaman.
Bt ;
Recall = Number of items retrieved and relevant

Total relevant

Precision = Number of items retrieved and relevant
Total retrieved

Figure 6.10: Rerrieved Sets. Definitions of measures for retrieval
performance.

6.6 Epilogue

The concept of retrieving documents from a library is intrinsically linked with that of
storing the data in the library. Software documents communicate some model of the
world, and for reuse of these concepts a developer needs to be able to access this
model.

The user of a software reuse library is assisted in searching for useful software
components by an information retrieval system (see Figure 6.11). Using document-
oriented techniques a searcher enters keywords to specify a software document. These
retrieval methods, though simple, can work well. But semantically they are very
weak, and there can be little structure implied in a search. In the object-oriented
perspective, domain analysis is used and sofiware components are seen as objects with
attributes, including ‘input’, ‘output’ and ‘function’. The user then searches for useful
components by specifying desirable attribute values. This method is more flexible for
retrieval than document-oriented techniques, but results in the organisation of the
library being more difficult and time-consuming to set up and maintain.

T2 Software Reuse

%

Information
Retrieval
System

Desired
Components

User
of
Library

Reusable Components

Figure 6.11: Principle of Information Retrieval from User Perspec-
tive. The user has a need for a component or components, this need
is expressed by them to the Information Retrieval System, which
can obtain the components.

Document-oriented retrieval requires that the user has a firm idea of both what his
or her desired component looks like, and how it is likely to have been described or
indexed at the organisational stage by either a human or automatic indexer. This
contradicts one of the basic requirements of a software component system, that the
user of the library must be able to retrieve a software component even when their
ideas of how it might work precisely are not yet fully formed or defined. This makes
retrieval particularly difficult for a developer in the early stages of the software
development life-cycle, when he or she may most need to know which reusable
components are available to fulfill his or her needs, and thus this is another factor
discouraging to potential users. This method may also be a problem for the novice
user, who may not easily be able to express his or her needs clearly due to
inexperience of the domain or of the retrieval system.

' B

Retrieving 73

The object-oriented retrieval methods are more formal and require more effort
from the people building the library. Domain modelling must take place each time a
component is to be added to the library, as the model must be carefully maintained to
ensure its integrity. Thesauri are very useful tools to support retrieval but they too
require much human effort to create and maintain.

Thus there is a tension. A system is either large, complex, and difficult to maintain
but supports complex and powerful searching techniques for users, with facilities such
as a thesaurus. However if the thesaurus is not well presented by the retrieval system,
then this is an extra factor to bewilder and discourage novice users. Or a system is
essentially very simple and it is up to the user to work out how to find the components
they need. This tension may be a contributing factor to the lack of acceptance of
software reuse as 2 standard practice in software development in the software industry.

74

7
Reorganising

The goal of software reuse is not simply to find program and document components
which might subsequently be reused, it is also to allow the developer to modify and
combine components and concepts to create new software. In general, the components
and concepts retrieved by the software developer from the library cannot be directly
reused without being modified. They must be revised to fit with the target problem.
This stage may be called asset wtilisation or reorganisation. How much work is
needed to reorganise an item depends upon many factors.

If the library contains program code for reuse, then unless the components were
designed from the outset to be reused in other projects and in other domains, then
reorganising the component may not be a simple case of instantiating the existing
general component for the current problem in hand. Fundamental changes to a
component may be necessary. For example, to change the data-type or language, a
redesign may be required. Alternatively, the library may contain the top-level design
documents abstracted from the brief of the prior project. These are general documents
and changing aspects of them is easier than with more specific documents, but the
number of abstractional stages that are reused is reduced.

The application in which the component was originally developed will affect it in
many ways, some perhaps extremely subtle. In a particular application it may be
important for a component to be efficient in its memory allocation, or to be fast and
efficient in execution. This is just one of many compromise decisions that may be
encoded in a software document, be it a cede segment or a design document. There
may be many compromises made in the design of the software, dealing with every
aspect of the described component : usability versus functionality, readability versus
optimisation, and so on. These must be transformed to match the developers current
application. This can be extremely difficult to do, and is made more difficult by the
fact that the original developers themselves may not have been aware of some
decisions of this type.

7.1 Retrieved Component Suitability

Even if a search for an item does not simply fail, the retrieved item may not fit the
expectations of the developer. To what this may be attributable will depend on the
skills and methodologies of both the indexer and the developer. Systems for retrieval
might allow searches to account for quality of desired components. Items may be
inefficient or poorly tested.

Reorganising 75

A code segment or design, although well written may have requirements for
control over data structures or system resources that are unreasonable in the context of
the new target system. As a simplified example, a retrieved item may be a fast sorting
algorithm, However to operate this algorithm requires two copies of the data. This
may be undesirable, or infeasible given storage restrictions on the target machine.

The library may only store components expressed in one design methodology or
programming language (or both). However if mixed methodologies are used, it might
be the case that a retrieved component is expressed in a specification or programming
language with which the developer is unfamiliar. If this is the case it may be that the
developer cannot rely on understanding the component to the required degree. Only in
extreme circumstances would it be considered worthwhile for the developer to learn a
new software engineering technique, or programming language in order to
comprehend the component. A similar problem would exist if the library contained
specifications which were a mixture of data-flow oriented and control-flow oriented
designs, as these are fundamental methodologies and cannot easily be reconciled
together.

It may be very clear to a developer that a component exactly fits the specification,
or is totally unsuitable. However in most cases the usefulness of the retrieved
component or components is somewhere between these two extremes. It would be
ideal if some automatic system could be designed to quantify how close a march exists
between the retrieved component or components and the desired one. This is a non-
trivial exercise and could only be achieved (if at all) by complex and formal
specification of both the retrieved components and the target component, which would
in many cases be undesirable.

The common method for modifying code is to thoroughly read the code and from
that design and implement the modifications. Problems are found and usefulness
assessed by the time-consuming process of modification itself. Also in many cases it
will not be simply a case of closely examining a single component. If the library
system is large and well stocked then it may return, superficially useful components.
All or some of thern may be suitable for the target component, some may even be
optimal, but to analyse them to the level required to illicit this information is difficuit
and time-consuming.

It has been a common theme in this book that in the creation of any software
component, design decisions have been made by the original designer that affect the
component and it's reusability. These design decisions fall into roughly three

categories :

| Those that describe the problem domain and mode{ the solution,

2 Constraints imposed by the solution space, such as power and type of target
machine and programming language used, and

3 Stand alone decisions that have little or no effect on the rest of the program.

Decisions of Type | are the most important ones in the reuse process, these are
affected by Type 2 decisions. Type 3 are in general irrelevant. Some design decisions
are explicitly documented, though usually these will only be the fundamental
decisions that affected large areas of the components structure. Most decisions made

76 Software Reuse

and in many cases, all decisions, go undocumented and thus the reason that the
decision was made, and to a large extent the specific result of that decision are lost,
and the only representation of the decisions at all is the parts of the program that were
influenced by the decision made, and these parts may be hidden in several parts of the
program and influenced by other factors and decisions.

So it is important to be able to find these hidden global and local decisions. These
are most detectable at different levels of abstraction. The major decisions are best
viewed at a higher level of abstraction than a representation suitable for finding the
localised decisions. Reverse engineering is helpful in this process, it is the process of
extracting a higher level description of a component from a lower level one, such as
pseudo-code from a C code program [29]. Performing this task reveals decisions that
are obscured by the perhaps pages of code that is required to implement them [70].

7.2 Document Reorganising

Reorganisation of non-code documents forms an important part of utilising reusable
components since much of the information generated by the software development
cycle produces critical documents as well as the next abstraction of the algorithm.
Some of this documentation will be created anew, but for the reused components
attempts should be made to generate the new documents from their existing
documentation (see Figure 7.1),

A single document can be reorganised by moving around its sections. To be able to
do this in a meaningful and constructive way requires that the outline and document
be designed in a carefully balanced and modular manner [63]. There are problems
however with simply changing the ordering of a document. Good documents present
an argument and then gradually develop that argument as they progress. Simply re-
sorting a group of paragraphs will destroy this cohesiveness.

Components from several documents can be reorganised together forming a new
document. This can be performed by searching for blocks of text containing certain
key words, whereupon the outlines they are part of are combined and reduced to
allow the user to form a new document. Thesauri are useful in aiding the
reorganisation of documents. If two documents have been indexed using some or all of
the same terms, then it is not unreasonable to assume that those two sections cover
related topics and thus could be usefully compared or combined (see Figure 7.2). If
not enough links are generated by the raw indexing material, this method of
concatenation can be extended by using a thesaurus to broaden the range of the linked
terms.

Reorganising

Document Reorganization

Existing
Documents

Outlines

RN

\

New
Document

New
Outline

Thesaurni

Figure 7.1: Document Reorganisation. Original documents are pro-
cessed using their outlines and thesauri to form new outlines and
thus new documents.

7.3 Program Reorganising

Retrieved software components may be modified in various ways (47]:

. specialising : a generic component is in some way made specific to the
current problem,

. composing : reusable components are reassembled to satisfy new
requirements.

s tailoring : adaptation of software companents for new requirements.

Tailoring is the rewriting of an existing component to meet a desired specification and
was discussed earlier in this book under the heading of ‘Asset Utilisation’. Tailoring
is labour intensive and discourages the reuser in that many of the required tasks, such
as in-depth analysis of existing code, are unpleasant and tedious.

i it L o e

78 Software Reuse

Indexing Concepts

Control] [Design

System Control System
Design Dawa L} Control Design
Data
m o
—
links

Figure 7.2: Document Reorganisation Using a Thesaurus. The doc-
uments are indexed using commen terms, shown in the large box
above. Those documents that share indexing terms can be consid-
ered to cover some common ground and thus are candidates for inte-
gration.

7.3.1 Specialisation

Specialisation is the act of binding generic components to the desired solution space.
For this to be effective the programming language used for the components must
support generalised constructs. Ada provides structured techniques for generic
components, called generic packages (see Figure 7.3). The package is instantiated in
the main code segment of a program that uses this package. A package may even be
instantiated for more than one data type within the same program. This is made
possible by Ada’s ability to handle overloaded operators. For example, there can be
several versions of the function add_item, all called add_item. When a call to
add_item is made the version of add_item instantiated to use the correct variable type
for the calling parameters is automatically selected.

In other languages, depending upon the complexity of the data structure to be
inserted or modified, search and replace techniques or conditional compilation
methods support specialisation. Conditional compilation is a method in which a
makefile, a file that controls the compilation of perhaps several separate source files to
produce an object program, contains conditional statements. By setting variables, the

Reorganising 79

makefile will compile different versions of a program. For example, on some systems
several separate code routines exist to drive different visual display units (different
number of colours, size of screen, and such). Any program which is to drive the
display on any specific machine will have a variable set to indicate which display it
has and the makefile will detect this, based on environmental variables, and
automatically compile the correct display device driver,

Another kind of generic instantiation is template based. Here a program code
routine is written containing blank spaces, where for example the declarations should
go. To instantiate the routine all the user needs to do is fill in the blanks (see Figure
7.4). This offers advantages over simple code modification in that the area that needs
to be modified is highlighted for the developers, and thus they do not have to spend a
long time trying to analyse the function to find these areas themselves. The
disadvantage of this method is that the templates must be specially created, either
from scratch or derived from existing components,

generic
type item is private;
package queue_adt is
type gqueue is limited private;

-— Operators
procedure add_item{to_gueue:queue;new_item:item) ;

-~ Conditions
function queue_empty{test_gqueue:queue)return boolean;

private
-- Code to implement the procedures and functions.

end queue_adt;

Figure 7.3: Generic Variables. This code skeleton defines a package
to implement an abstract data type for a queue. The items in the
queue are defined as generic, and limited private (which is a code
hiding technigue to prevent users from attempting to ‘hack’ the in-
ternal structure of the package and misuse the provided functions).
The queue itself is then defined to use those generic parameters.
Nowhere in this code segment is a specific data type mentioned.

7.3.2 Composition

Composition is the combination of separately designed and written components to
create a cohesive whole, as in the UNIX pipe mechanism. When composing
components it is important that they can be made to fit together correctly, i.e. that the
parameters the first component passes to the second match the parameters that the
second component expects from the first. In the UNIX pipe system, which is described

£0 Software Reuse

Function BubbleSort (rarrays)
+ Template written by Andy Gray.

+ Declare Parameters

+ Define first element of array
first_input :=

+ Define size of input array
length_input :=

Begin
for counter_var = first_input to length_ input-1
+ Check for counter_var element greater than next
if
then
+ Swap the items
endif
end

Figure 7.4: Template. An example of a code template, showing the
parameters in bold that should or could be changed by the reusing
developer.

in detail below, each program has just one input and one output; however, in most
cases this is insufficiently powerful.

In the UNIX command line shell environment, standard system primitive
commands are implemented as simple programs, such as ‘1p’ which prints a file, and
‘cat’ which opens a file and prints the contents to the screen. Each of these programs
is small and provides only a limited functionality. However, when combined together
using pipes, they can produce complex results,

Every component has the same input and output mechanism, and the output of one
can be joined to the input of another very simply using a simple command called a *
pipe’. To join two commands together is simply a case of placing the pipe command
‘I" between the two commands (see Figure 7.5). This means that if a program is
required to, for example, open a file, process it (for example to add certain
components), and print the result, instead of a new program being written, or even a
sequence of code modules being joined together and compiled, the three programs are
simply linked together at the command line (see Figure 7.6) forming what is called a
‘pipeline’.

The developer is only required to write the ‘new_process’ part, the printer routine
and file opening are supplied as part of the operating system. This means that the
developer need only concern himself or herself with the new code, to actually
calculate the totals. Input and output to the new routine are dealt with using simple
input and output code, which is simitar to the code that would be used outside the pipe
environment. This allows for massive increases in reliability, since ‘cat’ and ‘1p’
will already have been in use with many other programs and have therefore already

Reorganising Bl

Pipe

—IN Process __| ad Process _|
9 One 9 _> Two 9
Std- Std- Std- Std-

In ik In Cut

Figure 7.5: UNIX Pipe. The process on the left takes its input, from
Std-In and produces its output on Std-Out. The ‘pipe’ connects the
Std-Out from Process One and the Std-In from Process Two. Thus
the output from Process One becomes the input to Process Two.

have been implemented for the current system and exhaustively tested.

There is no problem with version numbers since the programs are not actually
compiled together and all versions used will automatically be the latest one. UNIX
provides several of these basic programs for opening files, printing them, sorting them,
searching them, word counting, and so forth. Since the code used to implement these
routines is very basic C code, and all UNIX systems use C, they should be very
portable from system to system.

A very useful application of this pipe technique is to use programs as what are
called filters. These are extensively used in many systems. For example, say that the
totals program ‘new_process’ above, will only work with floating point numbers, due
to the way in which it was written. It would be possible to modify the source code to
create another program to add up integers, but this may be bad practice. For example,
if the way in which the totals are calculated is changed, then the two programs, floats
and integers, must be modified, not one. In UNIX one solution is to write a filter,
another program which goes into the pipeline, that takes integers and converts them to
floats. Thus only the pipeline is changed and ‘new_process’ is unmodified.

This filter technique can be and is used to solve common problems, such as that of
picture display and conversion. Many different file formats exist for storing raster
picture information. Many micro-computer platforms have their own most prevalent
image formats, such as TIFF and PCX. Other formats are more common on
workstations, such as Postscript encapsulated rasters and X Bitmaps. More recently
standard cross-platform formats like GIF and JPEG have become widely used. These
formats are all incompatible with one another. A program for displaying GIFs cannot
display a PCX file and a X Bitmap viewer cannot dispiay a GIF.

A user may have a display program for every format he or she uses, for example a
X Bitmap display program, a TIFF display program and so forth. Each program must
handle different screen displays and is usually quite complex. An alternative approach
is to have a set of conversion programs. But converting files one at a time is tedious. [t

g2 Software Reuse

cat source_file | new_process | Ipr -laser_jet

$1d-Out Std_In S14_0ut Std_In
pen New Pri
fle |t =D pwes P21 B | Fil

Process
File paser Printer

File

Figure 7.6: Inter-Program Communication Using Pipe. ‘cat’ opens
the file and its output is fed (via a pipe) into ‘new_process’ input
and then ‘new process’ output is fed (again via a pipe) into ‘Ip’s in-
put.

would be better to have a single display program that could handle all formats.
However building such a large system is a huge task. With the UNIX pipe another
alternative is available. The user has one complex display program, that can display
for example Portable PixMap (PPM) files, and has a conversion program to convert
JPEG to PPM, X bitmap to PPM, and so forth. Pipes filter the input file to create a
generic image format and send that to the display program (see Figure 7.7).

The UNIX pipe mechanism is easy to use due to it’s simplicity, but this is also a
problem. It is often important to pass many different parameters in different forms,
such as complex, abstract data structures, like arrays, stacks or queues, for which the
above is not an appropriate model. It is only suited to simple flows of information. The
handling of complex parameters is greatly simplified in object-oriented languages,
such as C++. Here the objects to be composed are distinct and communication
between compenents is minimised to those values that make sense for a particular
object.

Work has been done on Module Interconnection Languages [20] [38] [36] in which
rules automate code level integration. Developers describe their software as a set of
modules and a specification of each of their input and output characteristics. The
system then tests the connections to see whether they are compatible. This approach
to building reusable components makes relevant compromises between the granularity
of the components and specificity of their function.

——— T —-

Reorganising

XBitmap Postscript
it s

Pipe

Postscript
to PPM

Display PPM
in Mono

Display PPM
in Colur

Figure 7.7: Image Conversion. The original image format is filtered
by a relevant program to produce a PPM or Portable PixMap. This
is a very simple ‘lowest common denominator’ file format, which is
easy to handle. Then this file is displayed via a pipe by another pro-
gram which can only display PPM’s, which performs all the com-
plex display handling. A large number of programs are available to
perform functions on PPMs, such as to double the size.

84 Software Reuse

7.4 Code Generators

An alternative method of creating code efficiently is to generate it automatically from
formal requirements or design. This code generation technique is not strictly
speaking software reuse. On the other hand, it is another use of the specification and
bypasses the organisation and retrieval stages of the reuse cycle. The code generation
approach may shorten the waterfatl life-cycle by removing design, implementation,
and testing from the software production process. Developers specify the desired
program in some high-level language, with a possible mix of declarative and
procedural constructs. The generated programs are usually correct in construction,
thus alleviating the need for testing.

In some views of software engineering, software development is seen as simply a
series of transformations, from formal specifications to the finished program (see
Figure 7.8) [S) [89] [25] [35] [77). Code generating systems are designed such that
given a program specification written using some formal method, like Z-Schema or
VDM, that specification is transformed, via a series of intermediate representations, to
either an executable form or a form that can be readily made executable. Code
generation systems have four main advantages [46]

1 They relieve developers from labour-intensive, routine derivation of the lower
level abstractions of code.

2 Since the lower abstractions are machine generated, transcription mistakes
are impossible,

3 The system automatically maintains a record of development choices, their

rationale, or both, for maintenance purposes. Since this too is automatically
generated it too is error free,
4 Ensures the ‘correctness’ of the resulting programs by construction.
The transformation is performed by syntactic rules which work upon the original
definition and replace it with lower-level abstractions, until the executable stage is
reached (see Figure 7.8). In a reuse scenario a transformation may also be required to
modify an existing retrieved component specification that does not quite match the
developer’s specification into a specification to fulfill those requirements.

The difficulty in creating software using the transformation method [46] is that the
developer must specify exactly and with total accuracy his or her desired component
using a complex, formal method. Furthermore, this method has not been successfully
implemented on other than toy examples and the amount of knowledge necessary to
implement a system for anything larger could be prohibitive [55].

Reol ganising 35
rmal Fransform fi Transform F rogram
i i Transform
Speclﬁcanon . Three Code

Details
of applied
transformation

Change Log

Figure 7.8: Program Transformation. The formal specification is
transformed via several intermediate representations to produce a
target program, and a log of the changes made by each transforma-
tion is maintained.

7.5 Testing after Reuse

In the vast majority of cases software will not be reused in the same state in which it
was retrieved from the library, instead it will be modified or re-written. These changes
mean that any validation or testing techniques used to check the original program are
no longer guaranteed to be applicable. This case is also true of programs that are
modified as part of the normal software maintenance process, and it has been because
of this that the selective revalidation of software has been most extensively researched
in the past. This technique involves designing festing strategies that instead of testing
a program exhaustively, which has already been fully tested prior to being modified,
simply tests the modified sections. This is quite complex as the interactions between
perhaps hundreds of components are extremely complex.

However in a reuse situation this revalidation is more complex due to the more
subtle ways in which the original testing procedures can be invalidated. For example
the original testing can be made invalid by the component being reused in a situation
where the data the routine is required to act upon is different in emphasis and range of
values.

Reuse provides special challenges to a developer who reaches the testing stage.
Testing is easier to do if the developer of a piece of software is at hand, since that
individual will know that piece of software intimately and will have a good idea of
what they think are difficult parts of the solution that the program provides. In many

86 Software Reuse
LR.2
Exec(file-selector
- if valid(file then
Specification LR.1 open(file
Choose file while !(eof
/j Open file read text
\/_/\/\ wend
Load an Read Hls close(tile
example file Close file endif
N
S

Figure 7.9: Program Transformation Example. Here can be seen
part of a formal specification (in a textual form, for simplicity). This
specifies that at that particular point the user may wish to load an
example file. This can be transformed or expanded to show the tasks
involved in the two intermediate representations (ILR. | and LR. 2)
choosing a file and opening the file. This in turn can be expanded to
list the steps involved in each of these stages. This produces an ex-
ecutable specification, which could be compiled or perhaps trans-
formed (via T'form 1 and T'form 2) into an executable language
like C or Pascal.

ways of course it could be argued that equally important is to use an impartial tester
who does not have a large set of preconceived ideas about how the routine is written
and what special cases and so forth are handled in the code. However, in a reuse
scenario the choice of using either or both will not exist in many cases, since the
original developer of a reused component might have no connection at all with the
current team. The program may come with test data, but if the program has been
changed, then this test data may be inappropriate. The programmer or analyst who has
modified the component will obviously have gained an understanding of the

Reorganising 87

Specification Guidelines

Ak

Software Finished
Creation Product
Process
Software

& Documentation
Developer

When
necessary

Review

Reviewer

Figure 7.10: Quality Review From the original specification the de-
veloper creates a software package following the guidelines. The
component is checked for quality by the reviewer comparing it with
the guidelines and a review of how well it meets the criterion is writ-
ten.

component, but this will not usually be as in depth as that held by its original author.
Whilst talking about software testing it is appropriate to talk about the quality of
software. All through this book it has been put forward that the quality of a component
is extremely important for the reusability of that component. But what is quality? Due
to its subjective nature, guality is best enforced using guidelines for developers so that
when a component is written it can be expected to have certain features that are
considered to give quality to a component, such as all modules having approximately

e —

o —

T e e e g T

T

i
i

g

88 Software Reuse

a standardised size and all having been tested using specific techniques and
documented to a specified quality level. [27]) This created software is then reviewed
by someone other than the author to ensure that the standards have been followed (see
Figure 7.10). This task is also performed when the software is modified in some way.
Determining quality is a challenging and continuous task, as was also indicated in the
‘Reuse Framework’ Chapter.

7.6 Epilogue

It is something of a paradox that the Reorganising Stage is the most important of the
entire reuse cycle but is the least well covered in research and tools. There are two
main reasons for this. The first reason, is that the organisation and retrieval stages are
based on much long term work in the field of library science. The reorganisation stage
enjoys no such parallel field. The second reason is that this area is the most complex
and difficult to perform. It will be no easier to automate this stage of the reuse process
than to write programs which can themselves write programs, adapting to problems
along the way.
The reorganising stage raises many questions:

. If code is retrieved, is it in the right language? How well has this code been
tested? Is the test data available?

. If design documents are retrieved, are they in the appropriate design
language?

. If two components are retrieved that do the same job using different
algorithms (for example merge and shell sorts), which is the most applicable
here?

. Can documentation be reused too?

Many of these questions have no simple answer but the reorganisation phase depends
on answers to these questions.

Once reorganisation is completed, it is then and only then that it is first possible for
the development team to look back over the project and attempt to assess if reuse
techniques have paid off in this project. There are many possible pay-offs that reuse
may have, including shorter development time, less expertise demanded of team
members, and greater reliability and number of components created for future reuse.
Successful reorganisation depends on good organisation and retrieval. Additionally,
no organisation or retrieval can be good unless the ultimate reorganisation is
successful.

Section 3:

Practical Examples

This section contains three chapters. The first describes reuse tools, while the second
presents case studies in the management of reuse at companies. The third chapter is
about two systems for multimedia courseware reuse.

90

8
Software Reuse Tools

Within this Chapter several prototype systems are examined which Support document
and object-oriented software reuse. First software engineering tools are reviewed and
then two prototype reuse systems, called Practitioner and SoftClass. Finally a user
interface generator is described.

8.1 CASE

Computer Aided Software Engineering (CASE) may increase productivity in software
development. The productivity gained by using CASE comes from the following
areas:

1 CASE tools help enforce consistent technique usage throughout an

organisation,

2 Interactive graphics support allows software engineers to develop and
manage diagrams that help communicate design concepts.

3 CASE tools ease the complex book-keeping chores associated with software

implementation through a system of remjnders.

In order to maintain consistency throughout the software development cycle, many
CASE tools have centrally a database that stores ail the components of a project. This
database must at the very least allow engineers to logically associate documentation
and source code, annotate freely any part of the design, and manage different versions
of the software in production. But, by it’s very nature, a CASE environment will make
further demands on a database. For example, it must allow simultaneous access by
team members, allowing them to work independently and then merge their work back
into the main project. Hypertext, with it's arbitrary information structuring and entity
relationships, provides an appropriate model on which such a system may be built.

8.1.1 CASE Architectures

There are a great many CASE tools available which aid the software development
process in a variety of ways. An Integrated Project Support Environment (IPSE) is
intended to support all of the activities in the software process from initial feasibility
studies to software maintenance and evolution. At present there are few IPSEs in use,
but there are many under construction in North America, Europe and Japan. Several
available software tools are interfaced to a database management system so that output
of any one tool could potentially be an input into any other tool. It is normally the case
that tool interaction is predictable, but there are many cases of serendipitous tool
combinations and the IPSE database allows these combinations to occur when

Software Reuse Tools g1

required. Another advantage is that the project management have direct access to
project information and management tools and are able to use actual data collected
during the course of the project (see Figure 8.1).

All of the documents produced in the course of a project from feasibility studies to
fault reports can, if necessary, be put under configuration control and managed by the
configuration management tools which are an integral part of the environment.
Furthermore the database facilities are rich enough to allow relationships between
documents to be recorded so that designs, for example, could be linked to their
associated code, and changes to each automatically tracked. If an environment is
properly integrated, all support tools will present the user with a consistent interface,
so that the task of learning new tools would be made significantly easier.

A typical structure for IPSEs is to be built around a layered system, analogous to
an onion, where there are a number of layers of functionality provided by the different
levels in the system. The model includes the following layers.

Operating System,

Database System,

Object Management,

Public Tools Interface, and

User Interface.

It can be argued that IPSEs should be built in conjunction with a special purpose

operating system tailored to support the environment, but the need for portability has
meant that the innermost kernel (layer 1) in the IPSE is a standard operating system.
The majority of IPSEs have been chosen to be built on top of the UNIX operating
system. The reasons for this are partly to make use of the software tools supported by
UNIX.

The third layer in the IPSE is the layer which distinguishes an IPSE from a
software toolkit or CASE workbench. This is the object management layer which is
responsible for controlling and managing all of the entities produced during software
development. Broadly, the object management layer allows objects to be named, to
exist in a number of different versions, and it provides facilities for relationships to be
recorded between objects.

L R S

8.1.2 Hypertext CASE

Many interconnections exist among the components of the software life-cycle but
these interconnections are difficult and time-consuming to maintain in paper forms.
Hypertext makes it practical to connect all these pieces together automatically and
dynamically. Furthermore, hypertext supports information reuse. For example, when a
paragraph about a component’s design is used as a comment in the program
documentation and as a paragraph in both the user and design documentation, in a
conventional system this means creating and maintaining multiple copies of the same
information. In hypertext, this configuration can be implemented with appropriate
links from all the occurrences to a master copy of the information node. This gives
many advantages, not the least being that any modifications made to the section are

—

= |

92 Software Reuse
Information from other
%[:] %D Databases
Multi-
developer
interaction
CASE Configuration
Database L
version control
System
Project
Management

Information

99

Figure 8.1: Case Tools. The database supports the wider functions
taking place in the development of software.

automatically reflected in all its occurrences. Also the relationship between such
documents as requirements and code can be traced (see Figure §.2).

The Hypertext Abstract Machine (HAM) [12] from Tektronix is a general-purpose
hypertext storage system which can be used as a base engine for other hypertext
systems and in CASE systems. HAM stores its database in a centralised file server.
The storage model is based on five ohjects: graphs, contexts, nodes, links, and
attributes. A graph is the highest-level object which, in turn, contains contexts, Each
context has one parent context and zero or more child contexts. Contexts contain
nodes and links, while attributes can be attached to contexts, nodes, or links. HAM is
designed to work in a networked environment.

Tektronix has developed a CASE system called Neptune which uses HAM [19] and
is extensible. Neptune holds all the project components : requirements, design, source
code, test data and results, and documentation. In Neptune a link or node can have
any number of artribute/value pairs. The attribute ‘projectComponent’ can have

Software Reuse Tools 93

Links between levels

Documentation

Iniplementation

Spec-
ification ,

Comparison of system
documentation and original
specifications.

Figure 8.2: CASE Onion. Beginning with the specification, links ra-
diate to the derived extractions, until the final Documentation level
is reached. This documentation is then compared with the original
Specification to gauge how successful and effective the development
process has been.

any value from the set of project components; reguirements, design, source
code, tests or documentation. The attribute ‘relatesTo’ is applied to links
and can have any value from the set ‘leadsTo’, ‘comments’, ‘refersTo’,
‘callsProcedure’, ‘followsFrom’, ‘implements’, or ‘isDefinedBy’. By
example, a node with ‘projectComponent’ value of ‘requirements’ would
have a ‘relatesTo’ value of ‘leadsTo’ with the node whose
‘projectComponent’ was ‘design’ (see Figure 8.3).

A node may contain any amount or type of information. A link is not restricted to
pointing to an entire node but can point to any point within a node. Contexts are
defined by grouping nodes and links with certain values. For instance, nodes with the
‘projectComponent’ value of ‘code* are implicitly grouped into a context and
each node gets an attribute called ‘System’. The values of ‘System’ can be UNIX

04 Software Reuse

or VMS a query is made for the node predicate of ‘System=vMS’, then only those

nodes whose source code is applicable to Digital Equipment Corporations VAX/VMS
operating system are returned.

|NODE I

Project Component:
Requirements
Relates To:
leadsTo TN

INODE

Project Component:

Design

Figure 8.3: Neptune. Showing two nodes related by one attribute, as
described in the text.

With Neptune one can copy a subset of nodes and links from one context into
another context. Contexts can be used to define a workspace and partition a project
into local and global workspaces. A local workspace lets a developer abstract a subset
of nodes and links from the global workspace and place them in a workspace where he
or she can make local modifications, test these modifications against the rest of the
project, and when satisfied merge the changes back into the global workspace.

Ideally, the partitioning of workspaces between engineers should be disjoint, but in
practice it may transpire that two or more are working on the same nodes
concurrently. In order to allow this, Neptune must resolve concurrent update conflicts
and not allow the work of one engineer to be overwritten by that of another when local
workspaces are merged into the project workspace. To aid the developer in accessing
all the information stored many browsers are available, these include a node browser,
an attribute browser, a version browser and a node differences browser.

Software Reuse Tools 95

8.2 Practitioner

Practitioner was a five year project funded by the European Commission and
comprising teams in Germany, the United Kingdom and Denmark. The ultimate goal
was the development of a support system for developers involved in the pragmatic
reuse of software concepts. This system was realised as a set of prototypes, called
PRESS (Practitioner Reuse Support System). Practitioner was concerned with the
reuse of software concepts from the ‘ideas’ embodicd in requirements documents
through to code.

PRESS was designed not to be bound to a specific programming language but to
emphasise the description of software concepts. Thus it tried to bridge the gap
between:

. knowledge representation techniques; and
. the more general, information storage and retrieval techniques, which are
usually based around component retrieval from a library.
The PRESS system was designed with a ‘domain specific application area’ in mind,
that of a Steel Mill, which the project used as its example, but embodied techniques
that would be relevant in any area. To quote the project documentation:
‘In a sense, the PRESS prototypes can be seen as an information
platform for the trained professional in the technical world. They
may be used not only to store and administrate information related
to software concepts, but also more general domain-related
information, about the application area the software was written for,
in a structured form, which may be more or less rigorously
formalised.’
PRESS included three partially complementary prototypes: a small, low overhead
variant called PRESSTO, a bigger and more powerful version called PRESSTIGE , and
a collaborative hypertext system callead MUCH. PRESSTO ran without any form of
database system, being solely supported by the UNIX file system, whereas
PRESSTIGE made substantial use of an SQL relational database management system.

The PRESS toolkir included three processes exchanging information (see Figure
£.4). The “Tool on Plain Documents’ was for retrieving plain text files based on words
in them. The *Thesaurus Tool’ and ‘Tool on Structured Documents’ were for the
manipulation of more structured information.

8.2.1 PRESSTO

PRESSTO is the simpiest of the Practitioner tools, it is designed to specifically deal
with plain text, with some thesaurus support. PRESSTO supporis searching across
document collections using words taken from a word index by the user. PRESSTO is
very much based on features in the UNIX operating system and does not use a
database system. PRESSTO instead simply accesses files containing reusable

a5 Software Reuse
Questionatres
Tool on Tool on
Plain Structured
Documents Documents
7 ™z N
User
Interface
[X11]
Terms of
Domain
Language Mouse & Display
Keﬁrlb(l;::.rd Terms Ovutput
P & relations
Thesaurs
Tool
W N
UNIX ORACLE
File-System Database

Figure 8.4: Level One Press. Here the three main components of the
system can be seen, in conjunction with their interactions with the
user-interface.

components or concepts as they are stored in directories on the host computer (see
Figure 8.5).

The key concept around which PRESSTO is built is the notion of the occurrence of
a token (a term important to the developer) in a file. The main question that is being
asked by a developer of the software is ‘Which files contain which tokens 7', To set up
PRESSTO a file has to be created, called a ‘1s-£file’ which lists all the relevant
files containing reusable information and a ‘talc-file’ that lists all the relevant
indexing words in a natural language (such as English or German). PRESSTO can
then be used to extract all user defined symbols from programs written in a
programming language such as C or to extract only those terms that appear in the talc

Software Reuse Tools 97

Input for ToPD

User input
for editing
and browsing

File Names
and Term Lists

Selected
Terms
Selected

Domain Lang 3

SIBIL] and edited

Files

Selected Files
Selected
Terms
UNIX UNIX
File-System N File-System
T Output from ToPD

Figure 8.5: ToPD Bubble. Tool on Plain Documents (ToPD} func-
tionality.

and a document. The activation of the indexing function is controlled from a menu-
based interface (see Figure 8.6).

The retrieval function of the PRESSTO tool involves (see Figure 8.7) two modes,
‘File Mode’ and ‘Index Term Mode’. In Index Term Mode clicking or an index term,
for example ‘Giraffe’, causes all files that contain giraffe as an indexing term to be
highlighted in the file list. Clicking on the file name then causes it to be displayed in
the text window at the bottom of the screen. The File Mode is similar in principle but
is functionally opposite. Hence clicking on a filename would cause all keywords
contained in that file to be highlighted in the terms list.

98 Software Reuse
K3
File Edit Help
I select document list |
| solact document I
D t2 on Hupertext E
| solect tarn list l
O irclude s oo Ted Helson Definitions of NN
“[Hupertext iz] a combination of natursl language text with the coms
capocity for intaractive branching or dynamic display [L..] of a nox
text [.,.] which cannot be printed on & comventlonal page.”
(Neison, T.W,(1367) Getting It Out of Dur System, In Schechter, G, |
[nfernation Retrleval: A Critical Review. Hash. D.C.. Thospson Book:
| display ocouring term |
m “Hypertext, or non-sequential writimg with free user movement al
iz & siwple and obvlous ldea, it i3 merely the electronification of | [
Htorary connections oz we alresdy know them,” [Helzen, T.H, (19073 M
[l T 12
removs 3topwords
wpdate File list
lquit indexing
wkid new File list

Figure 8.6: PRESSTO Indexer. Showing a document that has been
loaded to be indexed and the functions that are available to act on it.

8.2.2 PRESSTIGE

PRESSTIGE provides methods and tools for building a concept medel called a
‘questionnaire’, and provided techniques for retrieving information relating to
software concepts. One method used to provide a structured form for entering
information about software is to create a concept model. One of the main purposes of
the concept model is to guide the analysis of documents being added and the
extraction of the information that will be needed to reuse the component later in a
structured way. A concept model should ideally contain all the information that may
be useful to a potential reuser. It may be possible to derive some aspects of the
concept model automatically using facilities offered by software engineering tools.
The concept model should store information about itself in addition to the information
it stores about the component it describes. It should say who created the concept
model, if it is tied to a specific project, and so on.
PRESSTIGE offered a set of supporting functions for three tasks :
. Construction and maintenance of a thesaurus and its related indexing terms,

Software Reuse Tools

Index Terms. : Files

aardvark fusrffiles/asia
anteater AND fusr/filesfasia/2
Ch“.‘ Jusr/filestasiaf3
chimp OR {fust/files/australia
d;)g h fusr/filesfamericas
BFPﬂf‘"‘ NOT fust/files/africal]
girafie T fust/files/africa/2
horse fusr/files/africa/3
mouse i
rhinocerous i Mode iiif;;:i,ﬂ;ti
zebra I‘l File ‘

. I Index Term

2 Matches Found

The giraffe is found on the planes of africa, where it
browses for leaves on tall trees.
Its long legs are

Figure 8.7: PRESSTO Retrieval. The PRESSTO search tool inter-
face. More power can be given by using the buttons in the middle of
the screen. If two terms are selected, then clicking on “OR” will list
all files that contain either keyword, clicking on ‘AND’ would dis-
play all files that contain both. The ‘NOT button is designed to al-
low the developer to search for files that do not contain a particular
term/set of terms,

. Description and indexing of software concepts (using questionnaires), and

. Browsing and retrieval of software concepts.

These tasks constitute a reuse scenario, where the domain model provides a standard
vocabulary that can be applied for subject representation (indexing) as well as for
subject retrieval of software concepts. The thesaurus links together questionnaires and
aids the developer in browsing groups of related documents by creating networks of
documents based on linking terms in separate texts via the thesaurus.

100 Software Reuse

The key components in the PRESSTIGE questionnaire are derived by the
developer answering various questions about the component to be stored. What these
questions are in a particular company would depend on the domain in which the
PRESSTIGE system was to be used. Typical ones include :

. administrative to the questionnaire itself; such as ‘authorising person’,
‘created by person’ and ‘date of creation’, or
. interfaces that the concept makes with other concepts, such as ‘interfaces

provided {output)’, “interfaces required (input)’, and ‘interface bindings'.

One of the main purposes of the questionnaire is to guide the analysis of the source
material and the knowledge analysis process that finally leads to the formulation of
reusable concepts. Questionnaires include Application-Oriented Descriptions,
Implementation-Oriented Descriptions, and Historic Development (for version
control) information. A questionnaire may reference another questionnatre. Allowing
hierarchies of questionnaires allows a top-down decomposition of software concepts
of any size, anything up to entire software systems (see Figure 8.8).

Description E%ﬁ
Conce?ls

Concepts
oo] e
Title
Description
: Math Lih
Degcndcncnes E”If

Figure 8.8: Hierarchical Concept Model. The answers to the ques-
tions on the ‘Top Level’ questionnaire are in turn ‘Component 6,
‘String Lib’, ‘Math Lib’ and for ‘Component 6’, ‘A.D.T. 6’. This
provides a hierarchically structured semantic net-like structure of
descriptions of a software item.

Software Reuse Tools 101

Questionnaires may be formed from scratch based on information in the software
engineer’s mind, or may be derived from existing software documents, such as
programs or design documents. Filling in a questionnaire requires comprehension of
the domain framework, especially when dealing with high-level conceptual designs. In
many cases the questionnaire aitribute values are uncontrolled, free text, but they can
be the names of other questionnaires, providing a structured document tree. This is a
mixed approach to library organisation, i.e a combination of both object (the
questionnaires) and document (the answers on the questionnaires) methods.

An example questionnaire will be provided for a software module that provides a
high-level interface called HLQS to a relationa! database management system. HLQS
takes as input a high-level guery in some format, and accesses a database of records
(see Figure 89). In the corresponding questionnaire (see Figure B8.10) the
subcomponents are referred to only by name because it is expected that they be
described in separate questionnaires. Interface Bindings describe both the interface of
the subcomponents to outside components (through the interface of the component
itself) and the bindings to data flows that are internal to HLQS.

The PRESSTIGE search tool makes use of the Common Command Language
(CCL) search language. The user is allowed the use of AND, OR, NOT and wild cards
except that under PRESSTIGE they are used for the retrieval of questionnaires, not
files (see Figure 8.11). The form of a CCL statement is:

102 Software Reuse
User’s
Input BD
User’s
\ Report

HLQS BD

Users
Input

User’s
Report

Exploded View
of HLQS

Figure 8.9: HLQS DFD. Data-Flow diagram of the software mod-
ule. HLQS has the three components Translate, Query, and Report.

find [<property>=] <search term [+<thes. re-
lations>] [AND | OR | NOT [<property>=]
<search term> {+<thes. relations>)]
[AND | OR | NOT ...
Where entries between brackets are optional search terms may contain wild cards. For
example, the search term
indv?
will find questionnaires that have been indexed with a term starting with ‘ind’ such as
indexing, indexed, or indices. The qualifier <property> can constrain the matches
found by a search by specifying a questionnaire property (for example the ‘Function’
of component) for which the match must occur. The qualifier <thes. relations> is used
to extend search terms. For example, the query:

Software Reuse Tools 103

High Level Interface to a Relation DBMS (HLQS)
Authorising Person: Joe Blow
Created by Person: John Smith

Definition:
Function: HLQS provides a high level interface...
Interfaces
Interfaces Provided
User’s report
Interfaces Required
User’s Input
Relaticnal DB
Concept Decomposition
Subconcept being Instantiated
Translate
Interface Bindings
External concept interface bindings
IN: User’s Input
Internal subconcept interface bindings
OUT: SQL query
OUT: Format template
Subconcept being Instantiated
Query
Interface Bindings
External concept interface bindings
IN: Relational DB
Internal subcorncept interface bindings
IN: SQL Query
OUT: Table
Subconcept being Instantiated
Report
Interface Bindings
External concept interface bindings
OUT: User’'s Report
Internal subconcept interface bindings
IN: Table
IN: Format template

Figure 8.10: HLQS Concept Model. Excerpts from questionnaire
describing HLQS.

find 'Function’ = ‘open-lcoop control’ +BT
returns questionnaires whose Function have been indexed by ‘open-loop control’ or
any of its broader terms (BT).

The browse tool enables the user to see all the keywords from all the
questionnaires, all authors of the concept models, all dates of creation of concept
models, and so on. It allows the user to see the terminology used in all the
questionnaires and thus get a flavor for the whole system.

104 Software Reuse

' = PRESS: Search Tool R

(Execute ccL) (Shov Log ...) (Show Help...)

FIND heal:inc_r.

B1abking Unit Control and Supervislon-1

Overall Management Infermation and Production Scheduling-1
Finighing and Warehousing Unit Control and Supervision-1
Coke Oven Unit Contrel and Supervisison-i

Blast Furnace Unit Control and Supervision~1.1

Coke Oven Unit Control and Supervision-1.1

Finishing and Warehousing Unit Control and Supervision-1.1
Overall Management Information and broduction Scheduling-1.
91abbing Unit Controcl and Supervision~l.1

—— D O

h 9 Questionnaire(s) selected PractitionerKeilmann

Figure 8.11: The Base Window of the Search Tool. This window
shows the Press search tool. An example of the result of a search
for all the concept models indexed on ‘heating’ is shown. The
names in the window are the titles of concept models found using
that term.

The form of a questionnaire for a domain can be described in any way the user
chooses. Once a questionnaire has been set up, the questionnaires to be entered into
the same system must be consistent with it. Once the Questionnaire Tool has retrieved
a questionnaire the developer may edit it, copy it, delete it, or move it.

The thesaurus tool is used for general management of the thesaurus (see Figure
8.12). A term, for example ‘open loop control’, can be entered and the thesaurus item
for this term is retrieved and displayed in the ten windows that form the thesaurus tool
display. The user can then see the BT (broader term), the date of creation, and so forth.
Any of the terms generated by the search, for example the Narrower Term, can now be
used as a search term to retrieve further related items. Usually only the domain analyst
has control over adding and deleting terms to or from the thesaurus. Control over
terms is important, if consistency is to be maintained throughout the thesaurus.

Software Reuse Tools 105

J

= PRESS: Thesaurus Toul
Tem: open-loop controly

Typa: [T] Preferred
(ove) « ipaate) (Term Cellection V) (Shew Log...) (show Help...)

IT: = BT: D=k =
control operacion [1*] controi operation ||| Uparations I~
. - I« =
ad : .
EN: e
ry
>
. =
i1 TERM: = K1: —
control [*] open-100p contro: ud Y -
feadforward control || | I P
A w| DATE | = -»
| 07=JUN=90 Ti
TRANS:
9teuerung
e = =
= NT: = O=D: =
[*] sequential occntrol i Y =
I T T

Keilmann

Figure 8.12: PRESSTIGE Thesaurus Tool. This is a tool to show a
thesaurus term, in this case ‘open-loop control’, and its associated
terms.

8.23 MUCH

The MUCH (Many Using and Creating Hypermedia) system supports collaborative
hypertext authoring [62]. MUCH enhances a number of functionalities of PRESS and
helps integrate PRESSTO and PRESSTIGE into a single multi-faceted system (see
Figure 8.13). PRESSTO testing demonstrated that ‘understanding’ tasks were not
well-supported when searching separate, but inter-connected documents, the user
having to go to the next one via word search. The MUCH system can alleviate the
problems in this situation. The MUCH system is programmed in C running on
networked UNIX workstations, having its own database system, and X-Windows
interface.

MUCH puts stress on the Qutline in a document, since it forms the existing
structure in documents and is possible to extract automatically. Outlines can provide
an overview of a domain and can aid a user in domain exploration. In MUCH, a
fisheye view of a document is implemented, by the user ‘folding/unfolding’ the
outline. Different links can be distinguished by labels. Annotation and discussion are
also supported by a ‘typed link’, called ‘Comment’ as a communication mechanism
among co-authors. Users can add links between hypertext nodes at will (see Figure
“Create Link”). The MUCH system is particularly useful for writing with reuse.
To this end two particularly strong features have been incorporated into the MUCH

106 Software Reuse

WRITE WITH REUSE

textual concept representation
& retrievai & thesaurus

new
document

D
E
s
1
G
N 0ld text
W material
1
T
H
R
E
u iona
v dfg‘rlccrlllol:l;:‘ Concept reusable Unstructured
4 p Relations materiat Maierial
& thesarvs]
relations -
Unstructured
Mamial

relationships

graphical retrieval &
concept representation thesaurus

ANALYZE FOR REUSE

Figure 8.13: Practitioner Reuse Mill. This diagram shows how the
different programs that were developed for the Practitioner project
fit together and exchange information.

system :

. the capability to import documents prepared in an SGML-like format into the
MUCH representation, and

* the ability to generate traditional documents from the MUCH system

MUCH supports tools for importing textual documents in standard markup languages
and builds hypertext where the outline is used as a hierarchical semantic net, and the
text under an outline heading is indexed using its heading. The document generation
capability is based on a traversal algorithm which performs a extended depth-first
traversal of the hypertext document (see Figure 8.15).

The MUCH system allows a user to take existing documents and create new
documents based on these. The user selects a start heading and a level to which a
depth-first traversal should proceed. New links can be created and certain links may
be defined as deadends so that the traversals can generate documents with significantly
different outlines from any currently in the library. The reorganisation efforts in
MUCH aim at providing different views of the same library according to users’

BT

Software Reuse Tools 107

rucha Edd Document Maee

moch Info_ | Update [ParegrepdTon
" MUCHA. User Guisy =
* MUGCHA Sysitm AJRIsPation
Gugs Found
4] Suggesson Box
] Gloval Messages
* Mat

3
poed
e

Bax
~ DEMOMSTRATION
A Moo Fix I And Bey
* MUCH 5y
WSER GU mcha Morr .
11 - §°:"’° ¢ C Link pdia)
11 Thasaung
]| - Cogritue reate Lin
1) - C
g‘ -« FACrad Sotroe Node: much
4] - Sem An +
+ Shyd hiod THTEe! Node: |

* Mot B
- Now R Place Afvar:

* Educaion +
| Link Typa: |D_Docament

Welcome To The MUCH System

§ ? Sunsex A Dead Bl | s 0
{} - Plans b
Q m";l CREATELINK
|]
i
s
Done.

Figure 8.14: Create Link. The outline is on the left, Paragraphs that
are attached to the nodes appear on the right when the user selects
an item from the windows on the left. The user has elected to create
another link and is about to enter relevant information in the small,
‘pop-up” window in the centre of the screen. (Note that links have

types).

specification. Thus the result in some sense can be seen as a draft of a new document,
and users can readily modify the structure and the contents of the draft with the
MUCH authoring facilities.

8.3 SoftClass

The SoftClass project was funded jointly by Canadian research granting agencies and
Tandem Corporation [46]. The project aimed to enhance sofiware reuse for
distributed management software and priorities hinged upon two alternative goals:

. reuse existing software, and

. to develop object-oriented software.

In SoftClass, the term ‘software component’ refers to software products at all stages of
development, including requirements and design.

108 Software Reuse

rucha Edit Document duce

Lljmoch Info | Update |MUCHA User Gilida

=] * MUCHA Uadr Gulde

* MUCHA suinor's Guide

" MUCHA System Agminislralion . la
Bugs Found
Szgemnn Bon | macha Made..

* unecbook

e e Traversal Oplions

ax B
* DEMONSTRATION
* tnests . much
A Modal For Cotaj St Nods:
" #UCH System .
e ‘son) End Node o

3R R

:L’;:::-":'pr ! Daph:
B - |
y :ﬂz‘:‘m" Aathar;
3 I;‘;:c:'::;‘;,‘::'p. Date YYMM/DO [- YYAMMADL: |
h] * Oicarded hatens, HWOIW:'

RN

* Sussex Paper
* GOH papar Parinid |nformation athor | Bate | Crodit
* Plans
Examples Disuritation
* plan dacard
i] * MUCHF1an
* MUCH Brachure | GENERATE OUTLINE CANCEL
* TOOLGIoup i
* Extamnat Ralalvons -
* OSCAR Archiecid

2|+ Foumby gse giscussion =
[Commpnt] Arahony iy

Figure 8.15: Traversal System. Here the Much outline system can
be seen, and options available to the user for manipulating the out-
line, are shown. These allow the user to control which of the types
of links between nodes that exist in the text should be followed.

8.3.1 Repackaging
One focus of the SofiClass project was the repackaging of documentation. This
repackaging relies on:

O a tool called SoftText that uses a theoretical model of technical writing to
extract a skeleton sofiware architecture and
. a simple automatic indexer -- catled Softindex -- that matches parts of the

document to specific vocabularies to support later retrieval.
The representation of software components in SoftClass is similar to Practitioner’s
questionnaires. Indexing terms belong to predefined (or computable) semantic
hierarchies (i.e. taxonomies), and support various retrieval algorithms.

In SoftClass, all software component descriptions are instances of description
templates or categories (somewhat like the PRESS Questionnaires). In general, for a
given development methodology, there is one category for each type of component
(e.g. process versus data) and for each level of development. Categories are
themselves arranged in a class hierarchy to take advantage of similarities between
categories. Each category is characterised by:

. a set of relevant attributes and their semantics,
. a set of permissible component categories, and

Software Reuse Tools 109

. a set of permissible generic internal relations.

When defining instances of the category, developers are automatically prompted for
mandatory attributes but have to explicitly bring up optional attributes. If an attribute
is shared between a component and its sub-components, its values are automatically
filled for the subcomponents. If an attribute remains invariant across development
stages, its value is automatically filled for subsequent level descriptions. The
SoftClass project particularly considered the step from a pre-design or analysis stage
to the design stage. For example, the ‘purpose’ of a software module remains the
same at the analysis or the design level. It suffices to specify it for the analysis level.

Alternatives were explored in order that SoftClass’s database could be ‘populated’
with descriptions of existing software components from various sources. The two
alternative source were:

. textual documentation and

. CASE 1ools export files.

The information contained in these sources is complementary. Textual documentation
is destined for human consumption and contains prosaic descriptions that are not
found in export files. Export files from CASE tools contain structural information that
is missing or hard to extract from textual documentation.

Extracting SoftClass-like descriptions of software components from other CASE
tools’ export files is fairly simple, and can also be an aid in extracting relevant sections
from textuat documentation and assigning them the right attributes. However, because
of the relatively recent foray of CASE tools into software engineering practice, and
because most of the early CASE tools offer little beyond drawing capabilities, the
project team had to expend considerable effort trying to extract structured descriptions
of software components from textual documentation alone. To aid in this they
developed the tool SoftText, that extracts a skeleton of software architecture from
textual documentation into SQL.

8.3.2 SoftText

Software document outlines reflect:

. the structure of software being documented (decomposition/aggregation and
component-atiribute relationships),

* the structure of development tasks, and

. various taxonomies {(e.g. a taxonomy of attributes and a taxonomy of

component categories) [46].
The extraction algorithm relies on a categorisation of outline headings and a
categorisation of the relationship between outline headings. With this information,
SoftText can reconstruct a skeleton of the software being documented and extract the
relevant pieces of text in the core of the document (see Figure 8.16).

110 Software Reuse

1. HLQS System
1.1 Function
HLQS provides a high-level interface

Figure 8.16: SofiText Extraction. Analysing this document and hav-
ing identified ‘Function’ as an attribute name, and ‘HLQS' as a
software component name, SoftText knows that ‘Function’ is an
attribute of ‘HLQS’, and that the text immediately following section
1.1 is the textual description of the value ‘Function’ for HLQS.

When documentation standards are closely followed -- modulo lexical variations
which the tool is able to handle -- all section headings and compenent names can be
unambiguously categorised. Additional heuristic rules are used to ascertain the
categorisation of section headings as component names. Once two hierarchically
adjacent section headings have been characterised, there is often only one possible
interpretation for the relation between the two [47].

SoftText takes as input MS-Word"" documents in text format, and produces a file
of batch commands (in Smallialk) to SoftClass to create the extracted components and
assign them textual attribute values. SoftText is able to recognise that a component is a
subcomponent another of component. However, it does not elicit the exact
relationships between them. Such relationships are extracted from export files
produced by PowerTools (PowerTools is a CASE tool from Iconix Software Inc.),
when they are available, including their graphical layout for the purposes of the
graphical interface. In Softclass a simple automatic indexer is implemented that
matches textual descriptions to a list of keywords. SoftText complements the
extracted information with CASE tools export files, when such files are available.

8.3.3 Transformations
Support for transforming reusable components is also embodied in SoftClass. In

addition to issues of component classification and retrieval, attempts were made to
answer three questions :

1 Given that no component was found that closely matches the requirements,
which combination of components (and in what combination} might satisfy
them, if any?

2 Given the (partial) description of a desired software component (presented as

a query to the software components library) and the closely matching
description of a retrieved component, which transformations should be
applied to the retrieved component so that it satisfies the desired
requirements?

Sofrware Reuse Tools i

3 Given that a transformation has been applied to a retrieved component at a
given development stage (e.g. analysis), which transformation(s) should be
applied to its subsequent level descriptions (e.g. design)?

Focus on these problems was motivated by empirical data suggesting that developers
are quick to fall back on developing from scratch when a reusable component requires
non-trivial modifications [94]. The first problem can be seen as a retrieval problem,
and provides the basis for bottom-up development. An exact solution to this problem
is impractical, if not theoretically impossible, although heuristic methods can be
developed that provide potential solutions [47]. The second problem is very difficult to
deal with but can be dealt with to some extent. Methods to do this aid in dealing with
the third problem.

SoftClass supports data definition facilities that promote the reuse of data objects.
At the representation level, data objects are treated in the same way as process objects:
they have attributes, components, and an internal structure. However, they have one
special attribute, ‘Operations’, whose value is a list of protocols, each containing a
list of related process-like software components that operate on the data object. In
SoftClass, the inputs/foutputs of process-like objects are represented by attributes. The
keyword value of such attributes is the ‘type’ of the input/output. A process-like
component that appears in the ‘Operations’ of a data object must have that object
as a type for one of its inputs/outputs. In addition, data objects support sub-classing
whereby a data object inherits both the components and the attributes of its ‘super-
object’.

At the analysis level, the category Data-Object is used to describe application-
dependent data objects, such as ‘Customer File’, or ‘Product Inventory’.
Attributes include things such as ‘Update Freguency’ and ‘Access
Authorisation’.

At the design level, two categories were defined, one for generic, application-
independent data structures, called GenericDataStructure, and one for application-
dependent data structures called simply DataStructure. Instances of
GenericDataStructure include things such as ‘List’, ‘OrderedList’, or
‘HashTable’. These have generic names for components and operations (e.g.
‘GetFirstElement’). A DataStructure is created by mapping a DataObject to a
GenericDataStructure. For example, ‘Customer File’ would be represented at the
design level by mapping its analysis level representation to the GenericDataStructure
‘HashTable’. The mapping involves:

. mapping the application-meaningful attributes and components of the
analysis-level DataObject to the names of attributes and components of the
GenericDataObject, and

. mapping analysis-level operations to the operations of the
GenericDataStructure.

112 Software Reuse

Part of the latter is done automatically based on the mapping between names of
components and attributes. The dual inheritance structure for data objects
distinguishes between application semantics and design/implementation semantics,
which are traditionally mixed in object-orientation, with adverse effects on the clarity
of designs and the reusability of classes. This structure is also referenced by a program
design language compiler to validate manipulations on data objects.

SoftClass is a transformational software development tool [46]. Software is
developed by starting with more or less formal specifications, leading to some form of
program code which is executable, or can be executed. The process of transformation
is not completely automatic and the user may be prompted to choose the most
applicable transformation at a certain point in the transformation process, if the
knowledge SoftClass has is incomplete. SoftClass uses mappings to record
development transformations. For those development transformations that can be
automated, the mappings are given in a functional format, and when triggered,
automatically produce the target descriptions. For those development transformations
that require developer intervention, the mapping is recorded after the fact. In either
case, a developer is able to predict the effect of local changes at one level of the
development process on successive levels. SoftClass implements a trace of the
evolution of software through various development phases. The trace is made from a
sequence of mappings that echo the transformational process.

8.3.4 Related System

DRACO is another reuse system, like SoftClass,which interacts with and supports the
developer during the transformational process [49] [50]. DRACO is designed to
capture and reuse analysis information, rather than lower-level information, such as
code modules. A processor accepts high-level descriptions of the desired program and
generates the code. Designs for a particular domain are expressed in a formal way,
leading to an understanding of the inputs/outputs and processes.
DRACO is based upon domains and involves three new human roles in the
software development process :
. application domain analyst - a domain expert who can identify common
constituents in the requirements of several systems in a domain, or problem
area. His or her job is to define the objects and operations important in that

domain.

. domain designer - specifies different implementations for these objects and
operations in terms of the other domains.

C modelling domain analyst - similar to the application domain analyst but is

more concerned with which of these domain requirements have proven
themselves general to several areas of interest.

Software Reuse Tools 113

Once the DRACO domain is large enough, new systems can be built from the
existing component information. This is software concept level reuse but this can then
be transformed into code. The system has many domains, organised hierarchically and
some of which contain executable information to allow the transformation of code to
take place.

84 A User Interface Generator

Approaches to reuse may be classified as compositional or generative.
Compositional approaches support the bottom-up development of systems from a
library of available lower-level components. Much work has been devoted to
classification and retrieval technology and to the development of automated systems to
support this. Generative approaches are application domain specific; they adopt a
standard domain architecture model and standard interfaces for the components. Their
goal is to be able to automatically generate a new system from an appropriate
specification of its parameters. The Fourth Generation Languages used in the
commercial world can be considered an example of generative reuse. Such
approaches can be highly effective in very well understood domains, but significant
effort is required to develop the initial model.

Application generators accept specifications of desired application characteristics
and generate application products. By example, a generator supporting interactive
construction of graphical user interfaces might allow the direct specification of vser
interface abstractions, such as menus and buttons. An application generator typically
manipulates rather high-level constructs and allows the user, in a sense, to readily
reorganise the components into a new product. In this sense the application
generator is a reuse tool. On the other hand, some would argue that an application
generator is basically another piece of software and not a reuse tool. The remainder
of this section describes a graphical user interface generator and treats it as an
example of a reuse tool.

The main overall requirement of a user interface is ease of use, In several ways this
can be seen as a subjective thing, though there are several sets of guidelines to help
developers. One of the main needs when designing an interface is for consistency
[51]. Consistency should exist at many levels, from window to window in a program,
from program to program on a platform and so on. If all the gadgets (a functional part
of the interface, like a button or scroll bar) work in the same way, then the user should
be able not only to transfer skills from gadget to gadget, when used for the same thing,
(e.g. all scrolling windows have the same sort of scroll bars, whether they scroli text or
graphics) but also when faced with a new interface item, will be able to predict what it
does by the gadgets it uses. This also reduces potentially costly mistakes which users
make. Furthermore, consistency relates to code reuse, as the same code can be used to
ensure that all functions of a particular type behave identically.

114 Software‘Reuse

N3 ID selection popup oo

Filter
/cs/fornby/hypbook/emacsbook /PRPERBACK /%
Directories Files
/cs/fornbu/hupbook /emacsbook /PAFEREACK/, dir m
/cs/formby/hypbook/emacsbook/PAPERBACKY . . emacsbook
/cs/formby/hypbook/emacsbook /PAPERBACK/books hypinfo.el
/es/Formby/hypbook/emacsbook /PAPERBACK/figs

i
e —F E__Ib

Selection
/es/formby/hypbook/emacsbook/PAPERBACK/,

Figure 8.17: Graphical User Interface Example This shows the
standard Motif file selector.

A ‘widget’ is a construct used in the building of user interfaces and con_tai'ns sc:veral
gadgets. The Motif file selector (see Figure 8.17) a compound widget, it is built up
from several other widgets, two text widgets (‘Filter’ & ‘Selection’), two
scrolled text window widgets (‘Directories’ & ‘Files’} and four buttons (‘OK’,
‘Filter’, ‘Cancel’ & ‘Help’). The code for the text widgets, windows and
buttons has been reused to create this widget. If users wish to manually edit the
‘Filtex’ field, they know that they must click on it with the mouse button to type,
from their experience with other text widgets. This means documentation for.these
widgets can also be reused, since the information explaining, for example the action of
the scrolled window, can be the same anywhere that a scrolled window is used. The
user does still have to learn how the actions of the buttons and clicking on text in the
scrolled windows allows them to select a file, but once that knowledge is acquired it is
applicable whenever a file is to be loaded or saved with this file selector, in this
program or any other Motif complaint program.

The benefits to reusing widgets include less tangible gains. The predictability of
the interface gives users a feeling of confidence. If the original interface specification
used to design the widgets is well designed and ‘pretty’, then all consistent interfaces
are also likely to be so. Some aspects of consistency are cosmetic, such as fonts and

Software Reuse Tools 115

colours, but most are to do with functicnality.

Developers are eager to reuse interface widgets not just because of the direct
benefits of consistency, but also for other reasons. Developing good user interfaces is
a complex and time consuming task. The code for even some of the fundamental
objects such as a scrolled window may involve many, many lines of complex code.
The benefits of reuse are more obvious, and the ability to reuse is more tangible. Not
reusing in a user-interface is often noticeable to users. If windows look different or do
not function in the same way as other windows, then users will quickly notice,

Reuse in interface development is being made more automatic because of interface
development toolkits which are coming to the marketplace, for example Microsoft’s
Visual BTﬁmSICTM for Microsoft Windowsm, and Hewlett Packard’s Interface
Architect ~ for X Window. These are different in many ways but the basic principle is
the same in both. The developer creates an interface visually using high level
constructs. All code is automatically generated by the package using the specification
drawn by the user on the screen and selected from menus. The user writes only code
that is domain specific, the rest is generated from reusable templates and code
segments by the system.

Interface Architect is a software package by Hewlett Packard for the creation of X
Window applications. It allows the user to create interfaces which use the
international standard widget set of Motif, with very little, if any actual code having to
be written by hand. Interfaces are created by selecting items from menus and drawing
on the screen, the interface being drawn as it will look on the screen when completed.
Then the user can attach text areas, buttons and so forth to that window by selecting
the desired items from menus and dragging out their area. Each of these items can be
edited to move them, change fonts, indicate how it behaves when activated, and so on,
The developers can add their own code to the various buttons so that when a button is
clicked a program is executed. This is in stark contrast to usual methods of creating
these interfaces, which involve writing many hundreds of lines of code.

Interface creation is typically complex but unless something specialised or complex
is needed a developer can use Architect to create an interface without having to learn
anything about the actual physical code needed to perform any task such as opening a
window, thus allowing them to concentrate on the actual application-specific
segments. Once the interface has been designed, it can be amtomatically generated.
Architect generates stand-alone C code. Developers never need to directly manipulate
the generated source code. Instead the constructs can be loaded into Architect and
manipulated graphically,

Generic components can be created. It is possible to define parts of the interface,
such as the title of a window, using variables. The actual value used at run time (and
thus the text that is displayed) is the value of the variables when the call is made to
create the window. This feature is described in Hewlett Packard’s Architect
documentation as a reusable parametric component. It means that if similar dialogs
are needed for a group of tasks only one need be defined uniquely, the others can be
acquired by modifying the values.

116 Software Reuse

As well as creating programs, users can create partial interfaces, thus a developer
could create a set of reusable higher level components, which would be of widgets
similar in level of functionality to the file selector (which is already predefined) and
load them into Architect whenever they are needed. Also Architect provides for reuse
by allowing graphical user interfaces to be added to existing command line driven

UNIX programs quite simply.

8.5 Epilogue

CASE tools support systematic software engineering and facilitate reuse processes.
This chapter has emphasised two such tools, namely Practitioner and SoftClass. A
user interface generator has also been presented as an example of another kind of
reuse tool.

The Practitioner and SoftClass systems emphasise domain analysis. Each helps the
user analyse software-related information and encode that analysis into a
computerised-representation. Some of the analysis may be automatically done.
Retrieval in the Practitioner system is based on word searches, thesaurus searches, or
hypertext browsing. SoftClass supports retrieval of software descriptions from queries
that are partial descriptions. The authoring of new software or software-related
documents is supported by collaborative, hypertext authoring tools in Practitioner and
transformational processes in SoftClass.

An application generator is a very different type of reuse tool. Hewlett Packard’s
Interface Architect is a user interface generator. It has been described in some detail
to illustrate the domain model and the assets which application generators need and
benefits of consistency and efficiency they allow.

117

0
Case Studies

The major barrier to reuse is often claimed to be managerial or organisational, in the
sense of organising people not organising information. Accordingly, a study of
technological tools for organising, retrieving, and reorganising information can only
directly address the smaller part of the reuse problem. Managerial models have been
introduced in Section 1 of this book but a proper appreciation of those models depends
on real world examples or case studies. This chapter presents those case studies. The
key issue in this chapter is how companies manage their people in order to achieve
software reuse. As part of the Practitioner Project (described in the previous Chapter)
work was done at a commercial partner and is also described in this chapter.

9.1 Successful Commercial Cases

The following brief sketches illustrate the potential benefits of reuse [83]1. The
companies tend to be large and several are dealing with military applications. Later in
this chapter detailed managerial mechanisms of the corporate giants IBM, HP, and
Motorola are presented.

The Toshiba Fuchu Software Factory produces software using a standardised life-
cycle model. This factory produces process control software products. At Fuchu, the
use of metrics has been recognised from the start and reuse has been measured since
1977. A fourteen percent gain in productivity has been achieved annually. ‘Promote
Reuse’ is a company motto, and reuse is fully supported by the management. A large
library of reusable software items has been developed, and it is standard practice for
every project to review possible candidates for reuse at the start and throughout a
development project.

The GTE Asset Management Programme has been based on a prototype system
developed at the University of California at Irvine. This prototype was redeveloped by
GTE and resulted in a successful transfer of technology. At GTE, the aim was to
support reuse of any asset with the emphasis on software. The production system
developed by GTE held over 200 COBOL components. GTE found that in 1987, they
achieved a reuse factor of 14% and saved $1.5 million.

Raytheon Missile Systems recognised the redundancy in its business application
systems and instituted a reuse program. In an analysis of over 5000 production
COBOL programs, three major classes were identified. Templates with standard
architectures were designed for each class, and a library of parts developed by
modifying existing modules to fit the architectures. Raytheon reports an average of
60% reuse and 50% net productivity increase in new developments.

118 Software Reuse

NEC Software Engineering Laboratory analysed its business applications and
identified 32 logic templates and 130 common algorithms. A reuse library was
established to catalogue these templates and components. The library was automated
and integrated into NEC’s software development environment, which enforces reuse in
all stages of development. NEC reports a 7:1 productivity improvement and 3:1
quality improvement.

Bofors Electronics had a requirement to develop command, control, and
communications systems for five ship classes. As each ship class was specific to a
different country, there were significantly different requirements for each. To benefit
from reuse, Bofors developed a single generic architecture and a set of large-scale
reusable parts to fit that architecture. Because of a well-structured design, internal
reuse, and a transition to modern CASE tools, Bofors experienced a sizeable
productivity improvement in the number of lines of code generated per hour.

Universal Defense Systems in Australia develops Ada command and control
applications. The company began its work in this business with a reuse focus, and
has developed a company-owned library of 400 Ada modules comprising 500
thousands lines of code. With this base, the company developed the Australian
Maritime Intelligent Support Terminal with approximately 60% reuse, delivering a
700 thousand line system in 18 months.

9.2 Practitioner and the ABB Steel Works

The Practitioner case study is concerned with reuse within a Steel Mill control
system. Field studies in this domain were done with Peine-Salzgitter Steel Works and
Asea Brown Boveri (ABB). ABB implements control systems for steel mills and
wanted to establish a work process to improve the quality of software, minimise the
risk involved in the production of new software, provide more flexibility when
requirements change, and allow the reuse of software components from earlier
projects.

The American Association of Iron and Steel Engineers (AISE) has studied the role
of software systems in steel mills. For steel makers the problems are in general the
same as for other software projects, the need to cut costs and maintain quality. The
AISE set up a study and identified that reusing software was very desirable in steel
mills. Their original aim was for portable programs (ones developed for one system
could easily be used on another}, but doing this without changing the software was not
always possible [13]. AISE identified the problems with reuse as being :

. no single methodology to support reusability among disparate application
areas
. lack of techniques to provide reliable means of storing and retrieving

reusable software

Case Studies 119

. lack of adequate documentation for reusable software, and of means to iden-
tify its function

. lack of structuring principles applied in the design of software holding back
reuse of functional designs

and with regard to the steel industry

. lack of management commitment for financial and technical support required
to develop reusable software

. need for software library development and management

. need for educating software engineers in the steel industry about reuse
methods and benefits

. need to impose and enforce reusability guidelines on outside software

developers that supply the steel industry.

A big problem when upgrading software in a steel mill control system is that the
original system that is to be upgraded was probably written 20 or so years ago and
nobody truly knows the old programs in any detail. Also expectations of software now
are much greater than they would have been 20 years ago. An example of the life-span
of these systems is that at ABB one of the steel mill lines was first made operational in
1963, enhanced in 1975 and again in 1985, this line has always been computer
controlled. The Practitioner Project aimed to find a way of reusing at least some of the
concepts that this software addressed.

Several studies of steel mills and steel mill processes were analysed and combined
to form a set of concept models or questionnaires to describe processes in the ‘Hot
Mill Rolling Area’ of the steel mill. This formed the domain analysis necessary to
form a useful model of the steel mill, the processes involved and the materials
transformed by these processes. The Practitioner Project built on the results of AISE.
Questionnaires were produced to ‘provide a high level conceptual view” of the control
systems in various areas of the plant, for example ‘Hot Rolling Line Roll Management
Systems’. These questionnaires both complemented and augmented existing
documentation about the system and planned systems.

Experiments were carried out in-house by the Practitioner Developers and at ABB
with the Practitioner tools. Two sets of experiments tested the functionality of
PRESSTIGE. In one experiment, a C software package amounting to 2,800 lines of
code was redocumented using questionnaires. The entire functionality of the package
was documented in questionnaires. Filling the questionnaires took most of the 240
hours spent on the task. Users complained that some aspects of the concept model
were either irrelevant or unimportant.

After an introduction into the concepts underlying Practitioner and the tools, two
engineers performed tasks related to three major areas:

. thesaurus use and maintenance, using the thesaurus tool,
. locating questionnaires, using the CCL tool and the browse tool, and

120 Software Reuse

. the use of questionnaires for offer preparation in response to an actual call for
tenders.

The preparation of a tender for a project was chosen for the purpose of demonstrating
the reuse process, as it provides a short illustration of reuse, while at the same time
bearing enough resemblance to the design process to make realistic use of the
Practitioner methods and tools. The engineers were impressed with the functionality
of PRESSTIGE, and especially the browse tool which they felt was a powerful
instrument to list relations between objects in the database. However, they felt that
PRESSTIGE lacked tools to navigate directly through questionnaires without going
through the thesaurus, suggesting hypertext technology as a natural extension. All
participants raised concerns about the tools response time - an implementation detail -
but more fundamentally, about the cost of building questionnaires for a given
application domain.

While ABB was not dissatisfied with the Practitioner tools, ABB has not continued
to use the tools. The cost of building a domain model via the Practitioner
questionnaires was greater than the benefits which ABB realised. ABB remains
committed to encouraging reuse in its world-wide operations but will rely less on new
tools and more on managerial innovations.

923 IBM Reuse

Most major companies have quality management programs. IBM’s quality
management approach has as a major element the increased reuse of valuable assets
such as software, designs, and experiences to prevent redundant development and
maintenance efforts. In the late 1980s, IBM launched a worldwide campaign to
implement reuse formally into the processes of its internal operations.

Significant accomplishments have been made within [BM since the early 1980s in
reuse technology. Sites such as Boblingen, Germany, Houston, Texas, and
Poughkeepsie, New York have participated in this work. Part of the effort to formalise
the management of reuse in IBM can be traced to the work in Boblingen on building
blocks. Subsequently the IBM Corporate Reuse Council was established. The
Council established broad communication channels. These took many forms,
including newsletters, a ‘starter kit’, and electronic bulletin boards [85).

A focal group called the Reuse Technology Support Center was formed in January
1991. Its responsibility was to coordinate the reuse effort within IBM, provide
consuiting to technical organisations, and provide funds for tools and assets. In
addition, reusable parts technology centers were established. As writing reusable
software costs more initially than other software, management support is needed to
make that investment possible.

Case Studies 121

The application of reuse at IBM was recognised to occur at different levels. The
implementation of reuse in a business area entails exploiting opportunities for
software reuse across multiple contracts or products. For project-level reuse the key
activity is the establishment of a project reuse teant leader. The leader participates in
all of the project reviews and must be aware of external sources for reusable
components.

Implementing reuse for a site requires additional coordination. A site champion is
given broad coordination responsibilities. A common library of reusable parts is
established. The primary focus of the IBM reuse program is to establish reuse across
an entire site. Different sites within IBM have taken different approaches to
populating their reuse libraries. Some examine their current development efforts and
identify and build reuse candidates, while other sites solicit donations.

When the IBM Reuse Technology Center was formed, it targeted five sites for
support during the first year. By 1993, 30 sites world-wide were involved with the
Center. The best programs showed savings in the millions of dollars and reuse
accounted for 25 percent of the components in a software product. There have been
cases where the finely-tuned data abstractions provided by the building blocks
exhibited better performance characteristics than custom-built data structures. These
projects have benefited from the reduced maintenance costs as well as the improved
performance gains.

Few major breakthroughs are necessary to exploit reuse. Certain attributes of
software make software easier to reuse, but these are not necessary for reuse. IBM
experience shows that reuse can be accomplished successfully in existing products
with existing technigues and knowledge.

9.4 The IBM Boblingen Experience

At the IBM system software development site in Boblingen, Germany, the first
reusable parts center was established in 1987. The objective of the parts center is the
production of highly generic reusable software components for worldwide use within
IBM [88].

94.1 Steps

The Bobligen approach followed 5 steps: 1) define the goal, 2) determine critical
success factors, 3) define required activities, 4) validate plan, and 5) execute activities.
The goal was to establish a well-defined reuse program within two years that would
shorten development time, increase reliability of products, and increase the extent of
reuse. Brainstorming contributed to the determination of critical success factors.
The goal was seen to have aspects of trading. In other words, for assets to have
multiple applications, it is necessary to establish a trading infrastructure to link
customers and suppliers. The elements of a marketplace are derived from the fact that
suppliers offer parts and customers require parts.

122 Software Reuse

To store and advertise the parts to be traded, a repository for holding the parts as
well as their description is needed. Traders must also trust the quality of the parts.
As quality is often loosely interpreted, IBM preferred io use the concept of
certification level. This means a guaranteed completeness and defect rate of a part.
Additionally, the purchaser of a part wants some maintenance assurances. Some kind
of accounting is required to record exchanges and associated costs and savings.

Overall, the determination of critical success factors identified the following
factors: motivation, education, requirements for parts, offering of parts, part library,
quality criteria, maintenance, progress control, and accounting. To increase
motivation, incentives were introduced as an activity. A part library could initiaily be
a simple list, but communication channels are needed to make known and accessible
this library. As the library grows, structured methods and tools to support the library
are needed. For certification levels, the lowest was ‘as-is’ for software that was not
designed to be reusable but might be of use to someone. The medium level
certification indicated a part that can be reused without additional explanation.
Maintenance changes to software must be accommodated by the library. Education is
important at IBM. An appropriate curriculum addressing all aspects of reuse was
created.

9.4.2 Validating the Plan

Validating the IBM plan for reuse involves itself several derived activities including:
modify development processes,

run incentive program,

establish communication paths,

apply standards,

find sources for parts,

establish curriculum, and

have supporting tools.

In modifying the development process, the first modified phase is the requirements
phase. As a result of the reuse analysis, the estimated amount of code for a system is
divided in the requirements phase into product-unique code and reused code. This
separation eventually leads to a list of requirements for parts. This kind of
requirement dllows for proper subsequent monitoring of progress in reuse. The state
of reuse is collected in every development step.

Maintenance effectiveness for reused parts is gained by redefining the appropriate
process step such that error reports of customers can be quickly routed to the owner of
an erroneous component. More and more products should be composed of building
blocks owned by different organisations rather than created new each time. To exploit
the economic attributes of reuse, new accounting methods are needed. Experiences at
IBM shows that there is a lack of progress in determining the value of a reusable part
and of availability of flexible charging mechanisms between organisations.

B . AV I T

Case Studies 123

The IBM experience with modifying processes indicates that immature processes
are not appropriate to modify. With maturity measured on a scale from least mature to
most mature, a good starting point for modification of processes so as to better suit
reuse was deemed to be a process in the middle of the least to most mature scale.
Even at this one can not expect the staff to initially change their day-to-day operations.

The implementation of the process modifications is time-consuming and ideally
one would have many years to slowly adapt an organisation to a new emphasis.
However, the IBM reuse goal was to reach significant results within two years.
Accordingly an accelerator was needed. IBM adopted incentive programs for reuse.
The provider of a reusable part gets credit depending on the size and usage of the part,
and the user gets credit for integrating available parts. The award program at IBM
Boblingen also is consistent with existing award schemes in its schedule and emphasis
on quality, and rewards for usage of unmodified code only. Considering the benefits
of reuse, the incentives are a relatively low-cost investment.

The third activity in validating the plan concerns the communication paths. Several
communication channels were deemed important at IBM, including personal
communication, electronic bulletin boards, and databases. Personal communication
always proves to be the most important channel when working with representatives of
product areas. This person should be recognised as a competent professional and be
able to support exchange of information germane to reuse objectives. Bulletin boards
are also heavily used for reuse communications.

In the initial phase of reuse, when the repository of parts is small, a simple list of
these parts is circulated around the site. Later as the repository grows in size, a
database is used. IBM developed a sophisticated database for corporate-wide storage
and retrieval of reusable parts for internal use. It is similar to a lirerature database,
which is anyhow a reuse database of documented experiences. Searching simple lists
for reusable parts works very well for fewer than 500 parts. String search can be
easily used to find items in the list,. While sophisticated databases are valuable when
more than 500 parts are available, the IBM experience shows that even for a large-
scale repository that users benefit from the availability of simple lists of available
parts.

The fourth reuse activity concerns standards and measurements. Experience
shows that covering multiple sites by the same standards requires coordination from a
central body. IBM established the Reuse Technology Support Center for this purpose.
The most important guideline from this Center says how to measure the number of
reused lines of code. Financial and productivity calculations can be derived from this
measure of number of reused lines of code.

Counting the number of reused lines of code is not always a straightforward
process. At IBM, source instructions from a reused part count one, independently of
how many times one calls or expands the part [14]). The choice of using a subroutine
versus a macro should not be made to artificially increase the perceived number of
lines of reused code. In one actual example, a project reported 11 thousand lines of
reused code. Closer inspection revealed that 5120 line of the 11 thousand came from
one macro. The original code contained the 10-line macro and a ‘Do’ loop:

124 Software Reuse

Doi:=1to512
MACRO (i).
However to optimise the loop it was unrolled to yield:
MACRO (1)
MACRO (2);

MACRO (512).
The reuse report therefore contained 512 source instructions and 5120 reused
instructions, but does not fairly represent the degree of reuse.

In finding sources for reuse, IBM Boblingen had the advantage of multiple existing
sources. As previously noted, electronic bulletin boards are a popular medium of
exchange about reusable parts. While these bulletin boards have the disadvantages of
‘as-is’ usage without certification of parts, they are attractive to staff. A reusable parts
center was also constructed. Finally, as new software is developed it is reviewed by a
reuse board for spin-offs that can be contributed to the reusable parts center.

A curriculum for helping people understand and employ reuse was designed. The
concept of reuse was best introduced in the course of transition from third-generation
language to object-oriented technologies because object-oriented technologies have
many reuse characteristics.

Support tools should be available for reuse. IBM identified three particularly
important tool types:

. a repository for reusable parts,

. a source code configuration management tool to support integration of
reusable parts into products, and

O a code counting tool to count reused source instructions.

These tools should be integrated. However, presently these tools are not fully
integrated, and this lack of integration inhibits the diffusion of reuse.

9.4.3 Execution

Two extreme modes of inserting new technologies are the grass-roots and the edict
approaches. IBM used both. Edicts quickly generate some results. However,
experience showed that acceptance by staff of the methodology is not necessarily
obtained by the edict approach. Grass-roots projects requires patience on behalf of
the funding bodies. While incentives are inexpensive, IBM experience showed that
only people who already have some affinity to a method will be further motivated by
incentives.

The constraints of development organisations to deliver products to market in the
shortest possible time does not allow room for additional efforts to produce
generalised software. The production of building blocks is therefore the
responsibility of parts centres. The scope of the parts centre may be of various types.
At IBM Boblingen the library is of the horizontal type and provides general-purpose
building blocks usable in almost any application, such as queues. A vertical type of

Case Studies 125

library was developed and maintained at IBM in Rockville, Maryland. The vertical
approach requires that parts be available which are of higher abstraction than needed
for the next product release.

At IBM Boblingen the first step in technology transfer was to teach and distribute
information about reuse methodology and parts. This step did not actually lead to the
application of the new methods. A second step of advice and consultation was
added. The decision to get reusable parts for product development happens during
the design phase. Therefore consultation was offered to projects in the design phase.
This offer was welcomed but not really used. In many projects, design happens very
informally and interactively and consultation does not readily fit into this mode of
work. Thus IBM introduced a third step, called fingertip reuse into the technology
transfer process {see Figure 9.1). Fingertip reuse includes the availability of a tool
with which a designer can look for reusable parts within seconds, just when it comes
to mind. Otherwise, the threshold of asking for consultation proved too high.

\/—v_—\/
RN

Figure 9.1: Fingertip Reuse. The figure shows two fingers walking
across a book.

The metaphor of ‘let your fingertips do the walking’ which has been popularised
through advertising for Yellow Pages is appropriate to software reuse. The Yellow
Pages are accessible within moments at most offices and homes and users know how
1o instantly find something which would otherwise be time-consuming to find.

As a result of its efforts in reuse, IBM Boblingen was able to triple its reuse rate
within 12 months. However, increasing financial and administrative independence of
company divisions may lessen opportunities for reuse. The application of the Critical
Success Factors method helped the planning and implementing of a reuse strategy,
but the execution of the activities required iterative readjustment.

126 Software Reuse

9.5 An IBM Reusable Parts Centre

Prior to the 1980s, reuse of code across project borders at IBM seldom took place. No
organisational structures supported cross-project communication, and the lack of a
common design language further impeded communication. The code that was written
had too many references to global variables.

The IBM Boblingen parts centre was started in 1981. In the beginning the goal
was to have an integrated software development centre that supported the reuse of
parts. Investigations into reusable design showed that common structures exist in the
areas of data structures and modules. Developers were subsequently encouraged to
write software that would allow components to be added to the reuse library. Existing
products were scanned to identify replicated functions, A problem of too many
8lobal dependencies became apparent. Data abstraction became attractive.

In 1983 a project was started to explore data abstraction for a network
communication program. Seven abstract data types, called building blocks, were
written that represented a third of the total lines of code. Due to the good experiences
with abstract data types, a reuse model was constructed for it. The model showed the
importance of information hiding, modularity, standardisation, parameterisation, and
validation. The programming language PL/S primarily used at IBM at that time was
not strong in these features. Therefore a language extension was developed on a
second pilot project. The building block language extension BB/LX follows the
model of generic packages of Ada.

Building blocks in BB/LX are readily tested. IBM experience has proven the
quality gains to be significant. In one project, the quality of the building-block code
was about 9 times better than the rest of the code. In another completed, building-
block project, no errors were found during the entire test cycle of the product [8).

As more building blocks were produced, tools for the library became more
important. Tools for creating, compiling, and testing building blocks were provided.
An online library with a catalog aided in selecting the required building blocks,

The expectation that with BB/LX the developers would write their own building
blocks was not realised. Instead there was increased demand for building blocks from
the parts centre. A project in 1984 led to a library for which all building blocks had:

. consistent and complete interfaces,
0 common terminology, and
s hierarchical implementation.

A comprehensive catalog of reusable abstract data types was provided.

Subsequently, building blocks in C++ were investigated. As C++ was naturally
much better suited for reuse than PL/S, the development of the building block library
in C++ did not require as much time as for PL/S. In August 1991, the first release of
the library for C++ became available within IBM. By the end of 1991, 57 projects
with 340 programmers were already using the C++ building blocks. Users seem
more comfortable with the C++ than the PL/S building blocks. For both languages,

Case Studies 127

few developers use abstract data types as if they were a usual part of the programming
language. This makes support in selecting and applying building blocks necessary.

9.6 HP Reuse

Hewlett-Packard (HP) has been engaged in software reuse since the early 1980s [26].
Early work included the development of libraries of software components written in
the BASIC language and more recently the development of libraries in object-
oriented programs. Some of these libraries have been widely distributed within HP
and some provided to the outside. At the end of the 1980s HP established a corporate-
wide reuse strategy. This lead in the early 1990s to the successful application of reuse
on a larger scale and the development of further software libraries.

The HP corporate reuse strategy involves a core team of software reuse experts
with additional people working on assignments with several HP pilot projects, HPis
divided into several large divisions, such as the printer division, and unlike some
corporations, HP is not building a single corporate-wide reuse library. Rather each
division creates reuse programs and products customised to their needs. The core
team works with the different divisions to help them exploit reuse. The core team
develops economic models, coding guidelines, educational handbooks, and generally
consults with the divisions. The core team focuses on domain-specific approaches to
software reuse and has developed a domain analysis methodology for HP,

A study of reuse practice at HP has made it strikingly clear that the impediments to
improving software reuse are predominantly nontechnical and socioeconomic. When
confronted with their first reuse failure, a division should pursue an incremental
improvement process. For a reuse program to be effective, the specific inhibitors
likely to affect it must be identified. To better visualise these inkibitors, HP divides
these factors into the following categories:

. people factors include culture, motivation, management, training, and skills,
* process factors include domain, economics, and standards, and
J technology factors include tools and languages.

Once the inhibitors are identified, solutions can be tried.

The most effective reuse programs concentrate on the identification and
development of a small, high-quality set of needed, useful components, and make sure
that the users of those components know about them. This small library of less than
100 components can be handled largely on paper in terms of the catalog and the
distribution of information about jt. Large libraries of poor-quality components with
complex library system interfaces are not wanted. In this way, significant levels of
reuse can be achieved in any language with very little tool support. From this base,
the reuse effort can grow.

128 Software Reuse

For many kinds of software development, reducing time-to-market can be more
important than direct cost reduction. Missing a market window can result in a loss of
market share. A six-month slip in market introduction in a five-year lifetime product
can lose one-third of the potential profit. Under these circumstances, investing in
reuse may be the best way to allow subsequent reduction in product development
times. For example, one of HP’s instrument divisions was able to successfully
produce the application software for a new product in less than six months. The
division general manager asserted that without their prior investments in reuse which
allowed them to achieve 80 percent reuse in their software product, that they would
have not been able to meet their time schedule.

For embedded firmware products, recovery from defects shipped in the product can
be devastating. Increased cost for field service or product exchange can destroy
product profits. An estimate based on data gathered at one HP medical division
shows that a rework cost due to a firmware error can easily exceed $1 million. HP's
peripheral and medical divisions consider reuse as an approach to significantly
improve quality and thus a sound investment in reducing long-term costs.

Typical manufacturing organisations expend a significant amount of money to
select and qualify vendors and parts. Engineers are then required to design new
products using these preferred parts. In one HP software project this manufacturing
approach (o parts acquisition was applied to the design of a real-time database system.
The approach resulted in a 25 percent saving in total project cost.

In 1992 HP Laboraties (the research division of HP) initiated a comprehensive,
multidisciplinary software reuse program. While the library metaphor has guided
much work in software reuse, HP Laboratories is exploring an alternative metaphor to
the library. Typically, in the library-centred reuse approach, software code libraries
are intended to attract users who have a system design and want a tailorable part. The
HP Laboraty metaphor is called domain-specific kits and corresponds to the
commercial children’s toys from LEGO Systems, Inc., called LEGO building blocks.
The LEGO metaphor suggests parts that fit together and exhibit ease of use. Over the
years, the LEGO Systems building blocks have evolved from a small variety of simple
generic parts to a rich family of kits. Kits for spacecraft, for farms, and other domains
exist. Each system comes carefully packaged with instructions for how to use it and
may sometimes contain frameworks, such as a space platform. The HP Laboraties
approach to software reuse exchanges the library metaphor with the domain-specific
kit metaphor. The domain-specific kit includes components, frameworks, glue
languages, generic applications, tools, environments, and processes (see Figure 9.2).

HP’s HP-VEE system supports the construction of instrument systems and allows
engineers to connect virtual instruments together. Components are selected from a
palette and assembled using tools and a visual glue language to make complete
programs that can then be immediately run. HP Laboraties is exploring numerous
domain-specific reuse kits, such as a software bus kit. The Laboraties then work with
particular divisions to pilot test the utility of these kits.

Case Studies 129

Compon ents Framework

LJ
/

Appication

Figure 9.2: Kir: In the domain-specific kit, components are placed
within a framework and connected with gluc

One way to design a software factory based on the kit approach is to consider
inputs of user needs and purchased software parts into the factory (see Figure 9.3).
Kit developers than take these two inputs and develop reuse kits from them. Kit users
than work with the kits to develop a rich range of software applications.

Software Factory
user needs —9
kit kit
— preduction vse % applications
purchase: ;
software parts

Figure 9.3: Kit Factory: The two inputs on the left go through kit
production and kit use inside the factory before applications result.

130 Software Reuse

9.7 Motorola Reuse

Until the 1990s Motorola was primarily a hardware producer. From the beginning of
the 1990s the company committed itself to becoming a premier producer of software
also. The role of reuse in this multi-year, transitional project can be described as a
first-phase, grass roots effort and a second-phase, top-down effort.

9,7.1 Grass Roots Phase

Technical advisors to Motorola recommended that software reuse become a
fundamental practice at Motorola. As is often the case in a company considering a
new strategy, a reuse task force was created. The task force set various guidelines
particularly ones on education, motivation, and metrics. Finally the task force was
transformed into a reuse working group (34].

Corporate culture at Motorola dictates that major changes be driven from the
bottom up rather than the top down. Thus Motorola did not mandate software reuse
but wanted the software engineers in the various divisions of the company to drive the
software reuse effort. The corporate reuse working group consisted of fifteen
engineers who represented the entire Motorola software community. The group
concerned itself primarily with education. Five person years were invested in offering
reuse workshops to the Motorola community.

While the reuse workshops were enthusiastically attended and generated much
favourable comment, the net impact of this grass roots approach was negligible.
Motorota’s middle mangers were refuctant to adopt software reuse because of the up-
front costs and slow return on investment.

97.2 Top Down Phase

The Chief Executive Officer of Motorola responded to the difficulties of the grass
roots approach of the software reuse working group by assigning two senior managers
to an indoctrination or top-down effort that includes funded pilot studies. One of the
pilot studies was run by top management at Motorola’s Israel facility and was based
on a cash incentive scheme. In one example the reuse of a program saved $15,000 in
engineering costs and a bonus of about $1,000 was divided among the engincers
involved.

To encourage software engineers (o share their software components, the program
awards $100 for each approved component that is added to the database of reusable
parts. Each time a software component is retrieved from the database for reuse, an
additional award is given. This award is, at least, 5% of the estimated savings that use
of the component brings. The developer receives 40% of the award and the reuser
60%. The Israel group of 150 software engineers has through its cash incentive
scheme become the premier example of software reuse at Motorola.

ol

Case Studies 131

9.8 Epilogue

The cons@ction of domain models and libraries that support software reuse has
o'ccur.red In numerous organisations. The costs of developing and maintaining the
libraries are high and only systematic, reuse-oriented management of the software
staff leads to long-term benefits exceeding cost. This chapter has documented
several experiences of software reuse.

At ABB thc? sophisticated Practitioner tool set and its domain model methodology
was not attractive enough for ABB divisions to be willing to further invest in the tool
set. The challenge is to fit into the work flow of software engineers. For new reuse
efforts this fit may require simple tools.

'At IBM, fingertip reuse has proved critical to user acceptance. If software
engineers must consult with the corporate or division reuse librarians in formalised
ways, the engineers will not bother to follow the reuse plan. With fingertip reuse, a
designer can lock for reusable parts within seconds, just when it comes to mind.

The HP experience is consistent with that of ABB and IBM. HP found that the
most effective reuse programs concentrate on a small, high-quality set of uvseful
components, and make sure that the engineers know about this small library. At
Motorola a cash incentive scheme has proven most helpful to reuse. Again and again

the conclusion is that careful focused management of incremental change is the key to
reuse.

132

10
Courseware Reuse

Courseware is computer-based learning material and a kind of software. Typically the
courseware exploits full features of hypermedia. One synonym for hypermedia is
interactive multimedia [68]. Multimedia contains more than one media. Hypertext s
a particular instance of hypermedia which is devoted to textual material, although it
may contain photographs, tables, and such {64].

To what extent can existing courseware be reused to expedite the production of new
courseware? For many years courseware authors have tried to determine the factors
which influence the efficiency of courseware development. Reusable, instructional
templates within authoring tools were identified as contributing to efficient courseware
authoring over 15 years ago [3]. As the availability of multimedia courseware
components has increased, the attractiveness of building and exploiting libraries of
this material has grown. Several large international projects have recently focused on
developing tools for such libraries [15] and on populating such libraries [40].

Depite the reduction in cost of hardware and improved functionality of authoring
software, the development effort required to produce hypermedia courseware is still
substantial, In the aerospace training sector, one company spends about 400 hours in
developing each hour of training material [67]. The inclusion of high quality sound,
animation, or video can mean that developing a course from which students gain 1
hour of training time will require 800 hours from the authors of the courseware [111.

The main methods for estimating hypermedia courseware development include
educated guesses, industry averages, and formulas (41]. Educated guesses have
proven particularly unreliable. Industry averages vary widely from circumstance to
circumstance. The Cost Estimating Algorithm for Courseware (CEAC) uses a
composite model to estimate both courseware development time and cost [6]. The
model uses both course-independent and course-dependent parameters. For instance,
course-independent parameters include ‘overhead rates’ and ‘labor rates’. Course-
dependent parameters include ‘instructional sophistication’ and ‘availability of
existing lecture material’.

Libraries of media are being made available for reuse in various projects. For
instance, the University of Bristol has produced a videodisc with 36,000 biomedical
images. Copyright of the images remains with the donors of the images. The images
can, however, be freely reused for teaching and learning purposes within educational
establishments for non-profit making purposes. A catalogue of the material is
available and can be searched electronically [92].

In a film, the production cost of a single frame often costs over $300. Amazingly
this ultraexpensive footage is only used once. Experience has suggested that the
probability of finding and buying the right image(s) to fit into a movie is so low that
producers would rather make their own footage from scratch. Several efforts have

-

Courseware Reuse 133

been made to build video libraries which could be reused. The MIT Media
!..aboralory experimented with repurposing footage from the soap opera Dallas for
interactive replay. The experiment failed because this apparently multithreaded soap
opera was (0o tightly structured to be repurposed {56]. The Laboratory is now
exploring new tools to support video reuse [23].

This chapter will describe two systems that support courseware reuse. One was
developed for a small company, the other, for a large company. The features are
widely different, as one might expect.

10.1 Small Company

Integrated Radiological Services Limited (IRS Ltd) is a small company with seventeen
employees that specialises in diagnostic radiology and authors courseware about
radiological safety. IRS Ltd has a large number of potential reusable components
around the office, the majority of which are not currently being used by courseware
developers at IRS Ltd. IRS Ltd develops its courseware with an authoring package
called Toolbook from Asymmetrix Corporation and decided to develop facilities in
Toolbook to support courseware reuse,

10.1.1 System Architecture
The IRS Ltd system supports librarians in entering material into the library and

authors in accessing material from the library. The authors at IRS Ltd identified eight
types of material that they wanted the library to contain:

. Text

* Diagrams

. Photographs

. Graphs

. Tables

. References

. Questions/Answers
. Programs

and considered each type of material to be a distinct media type. The material is
organised in the library according to media type and to domain rype (see Figure 10.1).
Each reusable component within the database is of one of the eight media types
previously listed. Furthermore, each component has a textual description associated
with it. This courseware library also possesses a table of contents which incorporates
the main topics within the field of diagnostic radiology from the table of contents of a
book of diagnostic radiology. Each heading in the table of contents may correspond to
many reusable components of different media types.

134 Software Reuse

Arusable Datahade ﬂﬂ

Eile Edit Jext Page Help

INSTRUCTIONS

| Is

This database contains
Feusable ¢omponents.
[You tan either look at
4 table of contents
and then choose which
topic you wish to lock
at, or you can choase
[the medis you wish to
ibrowsa through e.g
photographs, and then
enter o keyword. which
fPill cause a list of
page headings
contarning the keyward
ou entered 16 appear.
You are then abla to
klick on the page
lheading of your
choice,

Figure 10.1: Entry. This screen from the IRS Ltd system shows
the ‘Table of Contents’ and ‘Media Index’ options which the user
first faces.

In developing and maintaining the library several different roles must be fulfilled,
including that of Collector, Populator, and Indexer. The Collector takes a list of items
from the author, finds the actual items, and gives them to the Populator. The
Populator converts the material into a format which is compatible with the courseware
library and then enters the reusable components into the courseware library. The
Indexer is required to place a text caption with each component that describes the key
concepts conveyed by the component. The Indexer also maintains the Table of
Contents and the list of Media Types.

The scenario for refrieval from the courseware library begins when the author
selects the type of access to the library, i.e. table of contents or media index. On
selecting the media index, the author next selects the type of medium he wishes to
examine. Then he enters keyword(s) which describe the topic on which he wishes to
retrieve components. The computer next searches the components of that media type
within the library. If the author selects ‘photograph’ from the media index and then
enters the keyword ‘bum’, a photograph of a burn may be retrieved (see Figure 10.2).
Authors are ailso able to retrieve relevant material from the library by selecting a
heading from the table of contents.

Multiple instances of Toolbook windows can be on the screen simultaneously. The
author uses one instance of a Toolbook window in retrieving components from the
library and another instance of a Toolbook window in directly creating the new course.
Material to be reused is transferred from the reusable courseware library to the
courseware being developed by the author.

Courseware Reuse 135

ToolBouk - B00K4. TBK

{The window op
ntein

P.ﬁgr book courseware
B H* ackage where you

[wich to place the
Raniphotograph

i ks
o | b

]
e e R Coin SR o

Figure 10.2: Typical Screen of the Reusable Courseware Libra
Image showing the facilities available during retrieval of a media
Lype to visit other components of the same type. The photograph

presented in the right half of the computer screen shows fingers with
radiation burns.

EANT L

10.1.2 Development versus Exploitation

An exercise was performed to ascertain whether the addition of materials to the library
followed by the development of courseware using the material within the library helps
to reduce authoring costs. Material which is not in a format compatible with the
courseware library is first converted into an appropriate format. Text presents itself in
a wide variety of formats. Text which is 10 be reused from documents only available
in paper form may be processed by scanning the text into the computer and using
optical character recognition software. Toolbook possesses an ‘import” facility which
allows plain text to be automatically imported. Figures which are paper-based are
also first scanned. For the purposes of this courseware library, all figures were
converted to a bitmap format and then imported into the library. The populators found
the scaling of the images more time consuming than other tasks, as this often involved
trial and error.

After the library is ready, the author uses the material within the library to aurhor
courseware. The time taken for the author to do this task is noted. Hence, the time
taken for the author 10 develop courseware with the aid of the tool can be calculated
and this zan be con.pared with th: time taken for the author to develop a similar piece
of courseware without the aid of the tool. The values obtained are substituted into the
following relationship:

136 Software Reuse

T wits tibrayMa + TeMc + TeMp + TIM; ? T g10Ma

where _ .

T winr Libmry 1 the time taken by the author to develop courseware with the aid of the
courseware library in hours;

M, is the wage paid to the author per hours;

T, is the time for the Collecting of material for the Library (P for Populator and I for
Indexer). '

M_. is the hourly wage paid to the Collector (P for Populator and T for Indexer); and

T aone 15 the time taken by the author to develop courseware without the aid of the
tool.

At IRS Ltd, the librarian-skilled staff are paid $7 per hour, while the authors, who
are also domain experts, are paid $15 per hour. For the single course developed in
this exercise, the cost of the author’s time is about $80 and the librarian costs are
about $500. Developing the course by the author alone costs $240. How many
courses of similar size to the one already developed and such that all components
come from the reuse library would have to be developed before the cost of the library
was less than the benefit of the library? The inequality given earlier of

T vits LibrayMa + TcMc + ToMp + TM, 7T 4 goneMa
would be ‘greater than’ for one or two courses but ‘less than’ for three or more
courses.

The cost of developing the library should include the cost of developing or
acquiring the software for the library. The library software was developed by one
software engineer working with one radiologist at an approximate labor cost of $5000,
which is much greater than the cost of collecting, populating, and indexing the small
amount of material which this library holds. If this cost of software is added to the
previous equation, the new equation is

T p with Library M +S0ftware + TcMc + TeM, + TiM; ?T 4 slone¥a
For this inequality about 40 courses must be written from the library before the library
proves cost effective.

10.1.3 Media Index versus Table of Contents

The Table of Contents was a useful guide for text retrieval {1]. Unexpected problems
occurred when the author tried to use the fable of contents within the reusable
courseware library to retrieve material other than text, for example, diagrams or
photographs. If there was a section within the book called Introduction, then this
would suggest that the text in this section of the book was introductory. If however,
a diagram, graph, photograph or table was included in this introductory section of the
book, the author could not anticipate the content of the media. The author was unable
to develop courseware using the table of contents alone because he was only able to
effectively retrieve text from the library, and the courseware which the author wished
to develop was multimedia.

Courseware Reuse 137

The author found the media index easier to use than the table of contents in some
ways. The author was able to first decide the medium he wished to examine and then
enter a keyword describing the topic on which he wished to retrieve material.
However, the author was not practically able to develop courseware using the media
index alone, because he could not get an adequate overview simply by accessing the
media index of what was available within the courseware library.

Results show that neither the media index nor the table of contents alone are
enough to support good recall or precision but together the media index and table of
contents do support effective retrieval [1]. The author found the table of contents
index useful as he was able to see, from the headings in the contents window, what
was present within the library. This enabled the author to access easily the text he
required and also helped him to decide on relevant keywords to enter when using the
media index to retrieve text. The author spent the majority of his time retrieving
material using the media index, but used the table of contents index when he wished to
orientate himself. To improve the speed with which items could be retrieved from the
library and thus increase authoring speed, both the table of contents and the media
index should be present.

Collecting material which might go into a courseware reuse library is a major task.
At some juncture, this material must be assessed for its true value to the library and
such assessments are themselves difficult. Getting the material into the proper format
for the library is a job for multimedia which is more complicated than for text.
Digitising video, for instance, requires powerful hardware. Indexing the material for
the library is another major activity. While some indexing can be done automatically,
much experience suggests that human indexing, while laborious, is important.

With these various costs to acquiring and evalvating material for the library the
challenge of building a large enough library to be useful is clearly daunting.
Furthermore, the contents of the library must be continvally updated and this must be
done in close communication with the needs of the users of the library. In the fast
evolving world of hypermedia, new formats themselves are regularly introduced and
old ones made extinct. Maintaining the format converters for this multimedia library
is a technical problem and in a sense easier to handle than the complex problems of
content and user satisfaction, but is nevertheless a significant problem.

The Toolbook authoring package used for the development of the IRS Ltd tool was
not designed to facilitate the building of courseware libraries or to act as a database.
When building libraries for reusable courseware components, a standard database
should be used to store the artifacts so that searches can be done quickly and easily.
This technical problem was addressed with the next system to be discussed. More
importantly, the next system explicitly supports collaborative work.

138 Software Reuse

10.2 Extended Reuse and Coordination Mechanisms

The experiences with IRS Ltd system have indicated various important features of
courseware reuse libraries. The conceptual model for the library and the mechanisms
for supporting coordination can be extended. One project for the training division of
a large, Italian, aerospace manufacturing company, called Augusta SpA, has produced
a particularly sophisticated prototype courseware reuse system. The overall system is
called Open System for Collaborative Authoring and Reuse of courseware (OSCAR)
[15].

10.2.1 Reuse Architecture

The OSCAR architecture represents the way in which the OSCAR services are
organised, what functional level they realise, and what relationship exists between
them. To better represent the organisation of services provided by OSCAR and the
relationship between them, OSCAR services have been grouped in layers (see Figure
10.3). OSCAR provides the following layers:

. Hardware Platforms : contains all hardware components supported by
OSCAR;

. Operating Systems : contains the operating systems supported by OSCAR on
the various hardware platforms;

. Communication Space : provides services supporting the distribution of the
system and the network management;

* Common Information Space : supplies information management services
relevant to the library,

. Coordination and Reuse Space : this layer provides high level services to

support coordination and reuse for a courseware library.

Client workstations represent the user entry point into the OSCAR system. The
OSCAR client workstations are mainly multimedia personal computers on which
library applications run. They also allow access to shared services such as email, file
transfer, and information management. They can be remotely connected to allow a
distant author to get access to the OSCAR services. The OSCAR server provides
multiuser services in the distributed environment. Operating system services provide
the management of all physical resources of a computer sytem and establish the basic
execution environment for applications. UNIX serves as the multiuser operating
system. MS-WINDOWS is the reference operating system for the client workstation.

The QSCAR Common Information Space (CIS) allows different software
components and different users of the system to share information, update them
consistently, and base their work on the work of others. The CIS includes
instructional objects each of which has an ‘instructional component’ and a
‘presentational component’. The objects of the Instructional Component (see Figure
10.4) include domain objects which are produced by a Domain Analysis and Student

Courseware Reuse 139
Coordination Reuse
tools and tools
]
Commo Comm;biindon Space
Information
Space { Distributed Envlroment—l
Network
L Libraries I Mangement
[___oopems] ||l Proioca |
| Operating System |
[Hardware Platforms |

Figure 10.3: The OSCAR Layers. Four layers are depicted here.
OODBMS means object-oriented database management system.

Modeling objects. On the other hand, the Presentational Component includes the
physical representation of the actual learning material. The MultiMedia Unit (MMU)
is a composition in space and time of several Monomedia Units (MUs). Examples of
MMUs are pictures with captions, but also couples or triples of pictures, pictures with
voice, and so on. A single picture, a text, or a sound sequence are examples of MUs
{see Figure 10.5). Of course, there is a need for an object that specifies how several
MUs can be combined in space and time to make a MMU. Such an object should also
be able to handle small interactions among MUs and diversified exits from a MMU.
This object is called ‘layout’, and it has been defined as a separate object to allow an
author to present the same MMU in different ways, and varions MMUs in the same
way.

The CIS includes a pedagogical classification schema. This pedagogical
classification schema functions as a kind of domain-specific filter between users and
the CIS [57]. A MMU may be characterised by the pedagogical classification schema
in terms of attributes, such as student background, teaching technique, and domain. A
flexible and powerful description and classification schema is necessary for the
purpose of efficient retrieval and reuse of MMUs.

The Reuse Services support both the retrievability and the customisation of training
material, The functionalities offered by the Reuse Services include conversion tools
to reuse material originally available in a format different from the desired one. With
the conversion facility, the user who is examining a particular monomedia unit may
convert that unit into any of many different formats (see Figure 10.6).

140 Software Reuse

Instructional Presentational

student
model

object

instructional
object

Figure 10.4: Two Components of CIS. MMU is multimedia unit.

10.2.2 Coordination Services

The coordination services manage the interdependencies between activities performed
by multiple actors. Components of the Coordination Service (see Figure 10.7)
include:

. Activities are sets of tasks for achieving a goal.

. Roles specify the responsibilities and duties of people.

. Workspaces contain resources associated with roles.

. Messages are objects that flow between the role instances associated with an
activity.

. Information Units are used in building messages.

. Rules constrain the behavior of components.

Roles, people, workspaces, information units and messages are represented as objects
and are stored in the Organisational Manual. In OSCAR the Organisational Manual
and other information germane to coordination are stored in the CIS.

For the development and maintenance of the courseware reuse library, OSCAR
defines several roles and activities. Prominent roles include collector, selector,
populator, indexer, indexing language expert, and quality assurer. First material for
the library must be collected by the ‘collector’. Then a ‘selector’ decides what of the

Courseware Reuse 141

i e e

.-:c_-\-;-‘.a:.'_ syt ik g oL

| [Terreanad_tea -
S

| wandan

] | mterackse_control
ST (e AL Eer it
it

T re——

e —— [ST .
| external_object | R s e [

s e —— ¥ bade il Rl oy

Figure 10.5: Screen onto Media Units. This screen dump from the
OSCAR system shows some of the features of the CIS, particularly
media units. :

collected material is of appropriate quality to go into the library [61].

The populator prepares the material for entry into the library and physically enters
it. This may involve scanning material or converting formats. The indexers assign
index terms to the library. Simultaneously, the indexers work with the indexing
language experts to create an indexing language. As the library and its index grows,
maintaining the indexing language becomes itself a job [78] [45]. The quality assurer
does quality control and specialists on quality are needed to correspond with every
other role just mentioned.

For the Coordination Services all intermediate products can be treated as messages.
For example, when an indexer proposes changes to an indexing language expert, a
message is created in the indexer workspace using a template from the organisational
manual. The message records information about the person who created it, the role
the creator was playing, and the time it was created. The indexer completes the
message.

The workspace tries to determine which person should deal with the message next
based on attributes of the message. In this case the workspace forwards the message
to the indexing language expert workspace and tells the indexing language expert role
that a message is awaiting attention. If the message can be processed, the role
instance locks it until the process finishes.

142 Software Reuse
e v o E e v == o TS
F!ie Tools Abslrni—." Hhmap 0.2 {- A
~LWE— 100 = |m_ e menm}ﬂ
|l i
{ .',’ 7 hoiea;
gt fpsge Y8
I .
| uqnn-.nd!uuem_ﬁp\:éi : -
B e e —— £ '3 i 5 j — —;
(dnacha_untt mﬁbﬂﬁ-’t{tﬂl% 'il-;!‘!} ﬂ‘r
ound NG, 8GN
1| | wave_sound sk ﬁ!‘{ g
| [ndea
Hiese—
1 [picture

“Eitmgp_pletira | o
. Ratiol el
text

| wnndow
| ntzractve _zontrol
e
[& Naeren [4]
[button Diiges:
[eemal_obyect
oo I W o]

Figure 10.6: Converter. Screen dump from the OSCAR system
which presents information about a particular image or bitmap and
gives the user an option to convert that bitmap into a variety of for-
mats.

The indexing language expert workspace retrieves an ‘assessment of proposal’
template from the organisational manual. By default, the person performing the role
would fill-in the details in the appropriate information unit of the message. However,
some of the fields within the information unit in the message may be filled-in
automatically by the role agent. After the person or the role agent fills-in the fields,
the workspace unlocks the message and informs the current information unit that it is
complete. At this stage, the information unit triggers its rules which check the validity
of the field values and determines which will be the new current unit and which role
will process it. The message then routes itself to the appropriate workspace.

This circuit is repeated until all the information units are completed. At this point
the message is considered complete and the next message is activated and routed to
the appropriate workspace. In this way, indexing language maintenance is supported
by the computer.

The preceding sketch of indexing language maintenance is only a small part of
library maintenance. The ‘reuse assurance role’ monitors the extent to which authors
are using the library. A search librarian helps the author find material. In the OSCAR
scenario, searching and browsing the CIS is supported by computer programs, but
experience suggests that human assistance would also be important.

Courseware Reuse 143

THE ORGANIZATION

® o o
‘.‘ . activity
¥ 1)
5 1

organizational
manual

message

role sgent ruleset

field ==

Figure 10.7: AME components.

10.3 Epilogue

Courseware is a kind of software and rourseware reuse problems are a particular case
of software reuse problems. This chapter has examined two courseware reuse tools
and experience with their use. As was the case for software reuse at IBM, HP, and
Motorola, one general impression is that the tools might be simple to fit into the
workflow for initial courseware reuse efforts.

A model of courseware development via reuse from a courseware library has been
elaborated. This model has been contrasted to a model of courseware development
without reuse. A major challenge for courseware reuse which is not confronted for
software reuse in general concerns the wide variety of incompatible media formats.
The challenges of converting courseware components from one format to another have
been largely overcome through the provision of various conversion tools. The
conceptual overview of the library contents has been divided into two high-level types,
namely a media view and a contents view. Neither alone supports adequate retrieval
but both together do.

N

144 Software Reuse

If a courseware library is developed and is only used by one author to develop one
piece of courseware, then the efficiency of the reuse process will be very low. A
reusable courseware library is most efficient when it is used to develop numerous
courses. As the costs of developing and maintaining a multimedia courseware library
are relatively high, a small firm might best choose a simple facility and try to quickly
realise some benefit from the system. Larger firms may be able to afford larger start-
up investments in the library. The critical factor in cost efficiency is a repeated use of
the library which will depend in part on the firm’s management policy.

145

11
Discussion

Software reuse is an important aspect of controlling and reducing software costs and
improving quality. Successful reuse depends on both managerial and engineering
concerns. The engineering concerns are with the representation of software assets and
their manipulation. The managerial concerns are with the plans of an institution and
with its handling of its human resources. The costs and benefits of reuse are
multitudinous. Nevertheless currently reusability, when it takes place is usually the
result of informal methods and chance rather than a powerful driving force behind
software development. A reusability driven development methodology should be
utilised for software, so that existing projects both reuse existing components and
create new components to be reused in future projects.

The engineering of assets can be viewed from multiple perspectives. In one view
assets are created, managed, and utilised. In another view, assets are organised,
retrieved, and reorganised (see Figure 11.1). In any case, these perspectives must
account for both the activities of people and of assets.

11.1 Representations

Traditionally reuse focuses on the reuse of code only. This requires least effort from
the developer and offers the most immediate returns, when successful. It also has its
roots in the component libraries associated with languages like Fortran, or in systems
such as X Windows with its widget code that implements buttons and windows and is
easily accepted by developers. The code is pre-written, pre-documented and pre-
tested. However more than code can and should be reused, if full reuse is to be
achieved. All information produced during the software life-cycle should be reusable
to some extent and tools should be available to the developer to help him or her in the
reuse of this information. Typically, the knowledge used and produced at the earlier
development stages of software tends to be expressed and presented in a human or
human manipulable language, while in the later stages of the development process
representations are closer to, or actually are, computer languages. Neither form is
problem-free for reuse.

Often the software library will not have a suitable component (code is very
specific). Developers may find the component difficult to understand. Any changes
other than very minor ones may involve reverse-engineering the component to reach a
state where it can be reliably modified. Often the testing advantage is lost, since the
component has to be modified or is being used in an environment different enough
from its development domain to warrant retesting.

146 Software Reuse
New
Componenis New System
Reorganisation
Software / System \’
Developer Design
Library
Requirements Components
for compaonent From Query

Library
System

Organisation

Documents D === Stored

and components

for the library D Components
@) = —

Indexer

Figure 11.1: Principles of Reuse. The software reuse-cycle.
Reusable components are added to the library system, the ‘organisa-
tion’ being performed by an indexer. On the formulation of queries
the system retrieves components and presents them back to the de-
veloper. The developer then modifies or reorganises these retrieved
components, perhaps retrieving further components if needs change
and adding new material to create a new product.

11.2 Costs and Benefits

Reuse involves significant change to traditional practice, and there are a number of
challenges to overcome in achieving its full benefits, Making software that is
reusable generally requires investment above and beyond that required for a one-time
system. This effort goes into making the software more flexible, ensuring its quality,

Discussion 147

and providing additional documentation. Each organisation must make decisions
about how the investment is supported.

Today's usual contracting methods can create a disincentive for contractors to reuse
existing software or to provide software for reuse by others. Legal issues arise over
liabilities and warranties. Responsibility for maintenance must be identified.

Reuse should reduce maintenance cost. Because proven parts are used, expected
defects are fewer. Also, there is a smaller body of software to be maintained. For
example, if a maintenance organisation is responsible for several different systems
with a common graphic user interface, only one fix is required to correct a problem in
the user interface rather than one for each system.

Reuse should improve interoperability among systems. Through the use of single
implementations of interfaces, systems will be able to more effectively interoperate
with other systems. For example, if multiple communications systems use a single
software package to implement one standard communication protocol, it is very likely
that they will be able to interact correctly -- more so than when each package is
written by a different company but is supposed to follow the same standard.

Another benefit of reuse is support for rapid prototyping. A library of reusable
components provides an effective basis for quickly building application prototypes.
With these prototypes the software group can get customer fecdback on the capability
of the system and revise the requirements as dictated by the customer.

With reuse on a small scale -- for example, use of a library of mathematical
functions -- the effort saved from a single reuse is not great; payoff comes from the
widespread reuse that is possible. On a large scale, entire subsystems, such as an
aircraft pilot subsystem, may be reused. However, the opportunities for reuse of a
given component are more limited. Large-scale reuse can pay for itself even if a
component is only reused once or twice, because of the amount of effort saved.

The effectiveness of reuse will be far greater in some software companies than in
others. If a software company or department exclusively develops one kind of
application, for example spreadsheets, then it is in the interest of that company to
build staff training around a reuse methodology since they will be able to build a
library of commonly used spreadsheet components quite quickly and it can be
expected that projects will be able to make use of large numbers of these components.
Companies which have no specialisation and deal with a large variety of projects with
few common elements have less to gain from reuse.

148 Software Reuse

11.3 Analogy to Traditional Libraries

Software reuse could not have occurred more than about 50 years ago because there
was no software. Document reuse has, however, occurred for centuries, at least. One
domain of document reuse is scientific research. There reuse by reference is
fundamental. A quality research journal article typically contains citations to about 20
other journal articles.

A small research team may maintain its own small library. Investment in this
library may include in the first instance the purchase of subscriptions to some journals.
A member of the team may be assigned on a part-time basis to somehow organise the
journals in the library so that others can find them.

As research teams cooperate and see the advantage to larger libraries, they may
pool their resources. In the extreme case, the national government is convinced to
establish a comprehensive library. One example of such a library within the medical
domain is the National Library of Medicine (NLM) in the U.S.A. NLM subscribes to
all 20,000 of the world’s biomedical journals. A continual and extensive quality
assessment of these journals selects the 3,000 best from the 20,000 and every article
within those 3,000 is indexed with about 10 concepts from a thesaurus. The thesaurus
itself contains about 100,000 concepts and is maintained by a full-time staff of about
10 people. The indexing section of NLM employs about 400 full-time, professional
indexers. The results of indexing are distributed world-wide via paper publications,
electronic network and CD-ROM. In short, the national level effort to maintain a
kind of reuse library is a massive effort,

The parallels of the traditional library situation to the software reuse sttuation are
instructive. Seftware teams that begin a reuse effort will naturally start with a small
library. Comparable to the journal article citation for software might be a call to a
program in the library. As the size of the software library and the number of its users
grows, the importance of a systematic approach to the library also increases.
National or international efforts may ultimately be the most appropriate.

Researchers who use the NLM system may also write journal articles which would
ultimately be indexed in the NLM system. For publicly-funded, medical researchers a
quantitative measure of success is the number of published, journal articles. For
commercially-funded, medical researchers the objective may instead be to suggest
methods or products which the commercial body can later exploit on the marketplace.
Accordingly, the commercially-funded researcher may be forbidden from publishing
some research results. For instance, a drug company may not want its researchers to
publish work about the new drug which the company is investigating.

Much software is made by companies that do not want to freely contribute their
products to a library for other companies to use. The example of national libraries of
research literature suggests an approach to software reuse. The government could
require that successful bidders for a government sofiware development contract would
provide the product to a public reuse library. This kind of approach is being taken by

o

Discussion 149

the American Department of Defense and may be an important step in the wider
acceptance of software reuse methods.

150

12
Selected Glossary

application domain: The knowledge and concepts that pertain to a particular computer
application area. Examples include battle management, avionics, and nuclear
physics. Each application domain can be decomposed into more specialised
subdomains where the decomposition is guided by the overall purpose or
mission of systems in the domain.

application engineering: The development or evolution of a system to meet particular
application requirements.

application generator: A software tool that generates software work products from
nonprocedural user specifications of desired capability.

asset: A unit of information of value to a software engineering enterprise. Assets can
include a wide variety of items, such as software life cycle products, domain
models, processes, documents, and case studies.

asset base: A coherent set of assets, addressing one or more domains and residing in
one or more asset libraries.

certification: The process of determining to what extent something can be trusted to
satisfy its requirements without error,

chief programmer team: A group of people who work together under the guidance of
a chief programmer with key support from the team’s librarian.

component: Synonymous with asset.

constructive cost model: An empirical model of software development effort that is
based on several attributes of the anticipated software product, such as its
size.

courseware: Software for instructional purposes which often includes multimedia.

design: The process of defining the software structure, components, modules,
interfaces, and data for an application system to satisfy specified
requirements.

document: Any information product, such as a requirements document or a computer
program.

document-oriented system: A system in which the integrity of documents is
paramount and their available structure in, for instance, Tables of Contents,
are needed to provide overviews. In such a system documents are often
located by a string search.

domain: An area of activity or knowledge. A number of different classification
schemes have been proposed for domains; some of the classes of domains
that have been identified include: application, horizontal, and vertical.

Selected Glossary 151

domain analysis: The process of identifying, collecting, organising, analysing, and
modeling domain information by studying and characterising existing sys-
tems, underlying theory, domain expertise, emerging technology, and devel-
opment histories within a domain of interest. A primary goal is to produce
domain models to support the development and evolution of domain assets.

domain engineering: The development and evolution of domain-specific knowledge
and assets to support the development and evolution of application systems in
a domain. Includes engineering of domain models, architectures,
components, generators, methods, and tools.

domain model: A definition of the characteristics of existing and envisioned
application products within a domain in terms of what the products have in
common and how they may vary.

domain-specific reuse: Reuse in which the reusable assets, the development
processes, and the supporting technology are appropriate to, and perhaps
developed or tailored for, the application domain for which a system is being
developed.

generation: A technique or method that involves generating software work product
from nonprocedural user specifications of desired capability.

herizontal domain: The knowledge and concepts that pertain to particular functional
capabilities that can be utilised across more than one application domain.
Examples include user interfaces, database systems, and statistics. Most
horizontal domains can be decomposed into more specialised subdomains
where the decomposition is often guided by characteristics of the solution
software.

interpretive indexing: The assignment of concepts to a document to indicate its
fundamental meaning.

legacy systems: Software systems in domains of interest that can impart legacy
knowledge about the domains and feed domain analysis or reengineering
efforts to produce domain assets or new application systems.

library: A collection of components, together with the procedures and support
functions required to provide the components to users.

library data model: The information (sometimes called meta-data) that describes the
structure of the data in an asset library.

life cycle: The stages a software or software-related product passes through from its
inception until it is no longer useful.

life cycle model: A model describing the processes, activities, and tasks involved in
the development and maintenance of software and software related products,
spanning the products’ life cycles.

methodology: A set or system of methods and principles for achieving a goal such as
producing a software system.

152 Software Reuse

‘Not Invented Here’ Syndrome: The situation when developers are unwilling to reuse
software that was developed elsewhere because it was ‘not invented here’,
Software engineers enjoy the creative aspects of their profession, and can feel
that these are diminished when reusing someone else’s software.

object-oriented system: A system in which objects and their relations are paramount.
Hierarchical relations are particularly important as they support inferencing
along inheritance paths.

organising: The collecting, analysing, indexing and storing of information so that it
can be easily accessed later.

portability: The extent to which a software component originally developed on one
computer and operating system can be used on another computer and
operating system.

precision: A measure of the ability to reject non-relevant materials.

process: A description of a series of steps, actions, or activities to bring about a
desired result,

process-driven software engineering: An approach in which software is developed or
evolved in accordance with well defined, repeatable processes that are subject
to continuous measurement and improvement and are enforced through
management policies.

query: A request for identification of a set of assets, expressed in terms of a set of
criteria which the identified items must satisfy.

recall: measures the ability of a system to retrieve relevant documents.

reorganising: The tailoring of information to suit a new purpose after that inforrnation
has been first organised into a library and then retrieved from that library.

requirement: A condition or capability that must be met or possessed by a software
system or software-related product.

retrieval system: an automated tool that supports classification and retrieval of assets.

reusability: the extent to which information is able to be reused.

reuse: The application of existing information. In software engineering, reuse usually
involves the application of information encoded in software-related work
products. A simple example of the reuse of software work products is reuse
of subroutine libraries for string manipulations or mathematical calculations.
A simple example of the reuse of information not encoded in software work
products is consultation with a human expert to obtain desired knowledge.

reuse-based software engineering: An approach to software-intensive system
development in which systems are constructed principally from existing
software assets rather than through new development.

reuse cycle: One pass through the Reuse Planning, Enactment, and Learning
processes in a particular reuse program.

X

Selected Glossary 153

reuse infrastructure: The collection of capabilities that is needed to support and sus-
tain reuse projects within a reuse program. Includes tools and technology;
organisational structure, policies, and procedures; and education and training.

reuse library: A set of assets and associated services for accessing and reusing the
assets, A library typically consists of assets, corresponding asset
descriptions, a library data medel, and a set of services (manual or
automated) for managing, finding, retrieving, and reusing assets. Such
services can include reuse consultation services.

reuser: An individual or organisation that reuses assets.

reverse engineering: The process of analysing a computer system’s software to
identify components and their interrelationships.

software engineering environment: The computer hardware, operating system, tools,
and encoded processes and rules that an individual software engineer works
with to develop a software system.

specification: A document or formal representation that prescribes, in a precise
manner, the requirements, design, behavior, or other characteristics of a
software product.

tailoring: The process of adapting products for application in new, specific situations.

thesaurus: A set of concepts in which each concept may have hierarchical and
associative relations to other concepts. A concept is labeled with a preferred
term. Synonymous or non-preferred terms are also provided.

traceability: The characteristic of software-related products that documents the
derivation path.

word frequency indexing: An automatic assignment of words to documents based on
their frequency of occurrence in the documents.

154

References

10.

1L

S Acquah, “Reuse of Courseware,” M.Phil. Dissertation, Department of Com-

puter Science, University of Liverpool, Liverpool, UK., 1994

William Agresti, “Framework for a Flexible Development Process.” in New

Paradigms for Software Development, ed. Wiilliam Agresti, pp. 11-14, 1IEEE,

New York, 1986.

A Avner, “Production of computer-based instructional materials,” in fssues in

Instructional Systems Development, ed. H.F. O'Neil, Ir, pp. 133-180, Academic
Press, New York, 1979,

T F Baker, “Chief Programmer Team management of production program-

ming,” IBM Systems Journal, vol. i1, no. 1, 1972,

R Balzer, “Transformational Implementation: An Example,” IEEE Transac-
tions on Software Engineering, vol. 7, pp. 3-14, January 1981,

D Barnes, “The economics of computer-based training,”” Conference Record for
1992 IEEE Fifth Conference on Human Factors and Power Plants, pp. 422-431,
IEEE, New York, 1992,

Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas, *Scalable Software
Libraries,” ACM SIGSOFT '93, vol. 18, no. S, pp. 191-199, December 1993.

D Bauer, “‘A Reusable Parts Center,” IBM Systems Journal, 32, 4, pp. 620-624,
1993,

T E Bell, D C Bixler, and M E Dyer, “An Extendable Approach to Computer
Aided Software Requirements Engineering,” IEEE Transactions Software Engi-
neering, vol. 3, no. 1, pp. 49-60, 1977,

B W Boehm, Sofrware Engineering Economics, Prentice-Hall, Englewood
Cliffs, New Jersey, 1981.

J Bourdeau, “Automating Instructional Planning,” in NATO ASI - Automating
Instructional Design, Development and Delivery, ed. R.D. Tennysons, Springer-
Verlag, 1993

Brad Campbell and Joseph M. Goodman, “HAM: A General Purpose Hypertext
Abstract Machine,” Communications of the ACM, vol. 31, no. 7, pp. 856-861,
July 1988.

Lionel Cartwright, “AISE Software Portability Project - Review of Step 2,”
AISE Year Book, pp. 94-97, 1985.

J M Caruso and D R Hancock, “The business case for reuse,” /BM Systems
Journal, vol. 32, no. 4, pp. 567-594, 1993,

Chaomei Chen and Roy Rada, “A Conceptual Model for Supporting Collabora-
tive Authoring and Reuse,” Knowledge Organization, vol. 21, no. 2, pp. 88-93,
1994,

16.

17.

18.

9.

20.

21.

22

23.

24,

25.

26.

27.
28.

29,

30.

References 155

IEEE Standards Committee, /EEE Standard for Software Quality Assurance
Plans, IEEE, New York, 1981,

Boeing Company, IBM Federal Systems Company, and Unisys Corporation,
STARS Conceptual Framework for Reuse Processes (CFRP), Volume I: Defini-
tion, Version 3.0, United States Air Force, Hanscom Air Force Base, Mas-
sachusettes, October 25, 1993,

Department of Defense, Requirements for the Ada Programming Environment,
Washington, D.C., 1980,

N Delisle and M Schwartz, “Neptune: A Hypertext System for CAD Applica-
tions,” Proceedings of ACM SIGMOD International Conference on Man-
agement of Data, pp. 132-143, ACM Press, New York, 1986.

F DeRemer and H Kron, “Programming-in-the-large versus programming-in-
the-small,” IEEE Transactions on Software Engineering, vol. 2, pp. 80-86,
1976.

Chris Edwards, Nigel Savage, and Ian Walden, Information Technology and the
Law, MacMillan Publishers Ltd., London, 1990,

W.B. Frakes and P.B. Gandel, “Representing Reusable Software,” Information
Software Technology, vol. 32, no. 10, pp. 653-664, December, 1990,

R Goldman-Segall, “Interpreting Video Data: Introducing a ‘Significance Mea-
sure’ to Layer Descriptions,” Journal of Educational Multimedia and Hyperme-
dia, vol. 2, no. 3, pp. 261-281, 1993.

Michael Gordon and Manfred Kochen, “Recali-Precision Trade-Off: A
Derivation,” Journal of the American Society for Information Science, vol. 40,
no. 3, pp. 145-151, 1989,

C Green, “The design of the PSI program synthesis system,” 2nd International

Conference on Software Engineering, pp. 4-18, [EEE Computer Society, Long
Beach, California, October 1976.

M L Griss, “Software Reuse: from library to factory,” IBM Systems Journal,
32, 4, pp. 548-566, 1993.

M Halstead, Elements of Sofrware Science, Elsevier, New York, 1977.

Jean Hartmann and David J. Robson, “Techniques for Selective Revalidation,”
IEEFE Software, pp. 31-36, 1990.

Philip A Hausler, Mark G Pleszkoch, Richard C Linger, and R Hevner, “Using
Function Abstraction to Understand Program Behavior,” IEEE Sofrware, Pp-
55-63, January 1990.

K Hayashi and A Sekijima, “Mediating interface between hypertext and struc-
tured documents,” Electronic Publishing: origination, dissemination and
design, vol. 6, no. 4, pp. 423-434, 1993,

156

31

32.

33,

34.
35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

Software Reuse

Robert R Holibaugh, Sholom G Cohen, Kyo C Kang, and Spencer Peterson,
“Reuse where to begin and why,” Proceedings of Tri-Ada'89, pp. 266-277,

ACM Press, New York, 1989,

DoD Software Reuse Initiative, DoD Software Reuse Vision and Strategy. Tech-
nical Report 1222-04-210/40, Center for Software Reuse Operations, Alexan-
dria, Virginia, 1992.

T C Jones, *“Measuring Programming Quality and Productivity,” IBM Systems
Journal, vol. 17, no. 1, pp. 39-63, 1978.

Rebecca Joos, IEEE Software, vol. 11, no. 5, pp. 42-47, September, 1994.

T E Cheatham Jr, “Reusability through program transformation,” [EEE Trans-
actions on Software Engineering, vol. 10, pp. 589-594, September 1984,

Gail E. Kaiser and David Garlan, “Melding Software Systems from Reusable
Building Blocks,” IEEE Software, pp. 17-24, July 1987.

Simon Kaplan and Yoelle Maarek, “Incremental Maintenance of Semantic
Links in Dynamically Changing Hypertext,” Interacting with Computers, vol. 2,
no. 3, pp. 337-366, 1990.

B W Kernighan and R Pike, The Unix Programming Environment, Prentice-
Hall, Englewood Cliffs, New Jersey, 1984.

C Lung and JE. Urban, “Integration of domain analysis and analogical
approach for software reuse,” Proceedings of the 1993 ACM/SIGAPP Sympo-
sium on Applied Computing, pp. 48-53, ACM Press, New York, 1993.

U. Margiotta and R. Picco, “An item banking service: pre-project for a national
system of evaluation tools,” Proceedings of the NATO Research Workshop, pp.
12-18, Springer-Verlag, Berlin, Germany, 1993.

.M. Marshall, W.B. Samson, and PI. Dugard, “Multimedia courseware cost
modelling,” European Cost Modelling Conference '94, pp. 27.1-27.18, 1994,
Yoshihiro Matsumoto, “*A Software Factory: An Overall Approach to Software
Production,” in Tutorial: Software Reusability, pp. 155-178, IEEE Computer
Society Press, 1987.

G M McCue, “IBM’s Santa Teresa Laboratory - Architectural Design for Pro-
gram Development,” /1BM Systems Journal, vol. 17, pp. 4-25, 1978.

B Meyer, Object-Oriented Software Construction, Prentice Hall International,
Hemel Hempstead, England, 1988,

Hafedh Mili and Roy Rada, “Merging Thesauri: Principles and Evaluation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 2,
pp. 204-220, 1988.

Hafedh Mili, “SoftClass: An Object-Oriented Tool for Software Reuse,” Pro-
ceedings of TOOLS USA "91, Santa Barbara, California, 1991.

47.

48.

49.

50.

51

52.

33

54.

55.

56.

57.

58.

59.

60.

61.

References 157

Hafedh Mili, Roy Rada, Weigang Wang, Karl Strickland, Cornelia Boldyreff,
[',enc Olsen, Jan Witt, Jurgen Heger, Wolfgang Scherr, and Peter Elzer, “‘Practi-
tioner and SoftClass: A Comparative Study of Two Software Reuse Research
Projects,” Journal of Systems and Software, vol. 25, no. 2, pp. 147-171, 1994,

S N Mohanty, “Software Cost Estimation: Present and Future,” Software Prac-
tice and Experience, vol. 11, no. 2, pp. 103-121, 1981.

J M Neighbors, “The DRACO approach to constructing software from reusable
components,” [EEE Transactions on Software Engineering, vol. 10, pp.
564-574, September 1984,

J M Neighbors, “DRACO: A Method for Engineering Reusable Software Sys-
tems,” Software Reusability, Concepts and Models, vol. 1, pp. 295-320, ACM
Press, New York, 1989,

Jakob Nielson, Coordinating User Interfaces for Consistency, Academic Press,
1989.

SHOh, Y J Lee, and M H Kim, “Knowledge-based software components for
qualitative measurement of DBMS,” Proceedings the 2nd international confer-
ence on Expert Systems for Development, pp. 69-73, IEEE Computer Society
Press, Los Alamitos, California, 1994.

A J Palay, Toward an ‘Operating System’ for User Interface Components, pp.
339-355, ACM Press, New York, 1992.

D Parnas, “The Role of Program Specification,” in Research Directions in Soft-
ware Technology, ed. P Wegner, MIT Press, Cambridge, Massachusetts, 1979,

H Partsch and R Steinbruggen, “Program Transformation Systems,” Computing
Surveys, vol. 15, no. 3, pp. 199-236, September 1983.

A Pentland, R Picard, G Davenport, and R Welsh, *The BT/MIT Project on
Advanced Image Tools for Telecommunications: an Overview,” Proceedings
2nd International Conference on Image Communications, 1993,

D Per_sico, I. Sarti, and V Viarengo, “Browsing a Database of Multimedia
Learning Material,” [nteractive Learning International, vol. 8, pp. 213-235,
1992,

Ruben Prieto-Diaz and James M Neighbors, “Module Interconnection Lan-
guages,” Journal of Systems and Software, vol. 6, no. 4, pp. 307-334, 1986.

Ruben Prieto-Diaz and Peter Freeman, “‘Classifying Software for Reusability,”
IEEE Software, pp. 6-16, January 1987,

DISA/CIM Software Reuse Program, Domain Analysis and Design Process,
Version I Technical Report 1222-04-210/331.1, Defense Information Systems
Agency Center for Information Management, Arlington, Virginia, March, 1993,

Roy Rada,.Joyce Backus, Tom Giampa, Subash Goel, and Christina Gibbs,
“Computerized Guides to Journal Selection,” Information Technology and

158

62.

63

64.
65.

46.

67.

68.

69.

70.

71.

72.

73.

74,
75.

76.

7.

78.

Software Reuse

Libraries, vol. 6, no. 3, pp. 173-184, 1987,

Roy Rada, Barbara Keith, Marc Burgoine, Steven George, and David Reid,
“Collaborative Writing of Text and Hypertext,” Hypermedia, vol. 1, no. 2, pp.
93-110, 1989.

Roy Rada, **Hypertext writing and document reuse: the role of a semantic net,”
Electronic Publishing, vol. 3, no. 3, pp. 3-13, 1990.

Roy Rada, Hypertext: from Text to Expertext, McGraw-Hill, London, 1991.

Roy Rada and Geeng-Neng You, “Balanced Outlines and Hypertext,” Journal
of Documentation, vol. 48, no. 1, pp. 20-44, March 1992.

Roy Rada, Weigang Wang, Hafedh Mili, Jurgen Heger, and Wolfgang Scherr,
“Software Reuse: from Text to Hypertext,” Software Engineering Journal, pp.
311-321, September 1992.

Roy Rada, Anthony Deakin, and Martin Beer, **Collaborative Development of
Courseware; Part One - Examples,” Journal of Intelligent Tutoring Media, vol,
4, no. 2, pp- 69-77, 1993,

Roy Rada, Interactive Media, Springer-Verlag, New York, 1995.

S R Ranganathan, Prolegomena to Library Classification, Asion Publishing
House, Bambey, 1937. Not published till 1967

Spencer Ruigaber, Stephen B Ornburn, and Richard J LeBlanc Jr, “Recognising
Design Decisions in Programs,” IEEE Software, pp. 46-54, Janvary 1990.
Gerard Salton and Michael McGill, Introduction to Modern Information
Retrieval, McGraw-Hill, New York, 1983.

C Saurel, “An Expert System Aiding Development Engineering Software Pack-
ages,” in Expert System and their Applications, Avignon, France, 1985.

Roger Schank, Dynamic Memory: a theory of reminding and learning in com-
puters and people, Cambridge University Press, Cambridge, England, 1982.

P M Senge, The Fifth Discipline, Doubleday/Currency, New York, 1990.
Geoffrey Leslie Simons, Whar is Software Engineering?, NCC Publications,
Manchester, England, 1987.

Mark Simos, “The Domain-Oriented Software Life Cycle: towards an

Extended Process Model for Reusability,” Software Reuse: Emerging Technol-
ogy, pp. 354-363, IEEE Computer Society, Washington, 1988.

D Smith, G Kotik, and S Westfold, “Research on knowledge-based software
environments at Kestrel Institute,” JEEE Transactions on Software Engineering,
vol. 11, pp. 1278-1295, November 1985.

Dagobert Soergel, Indexing Languages and Thesauri: Construction and Main-
renance, Wiley, New York, 1974,

79.

80.

81

82.

83.

84.

85.

86.

87.

88.

89.

90.

9l.

92.

References

lan Sommerville, Software Engineering, Addison-Wesley, Reading, Mas-
sachusetts, 1985,

Software Technology for Adaptable Reliable Systems (STARS), The Reuse-
Oriented Software Evolution (ROSE) Process Model, Version 0.5. Unisys STARS
Technical Report STARS-UC-05155/001/00. Advanced Research Projects
Agency, STARS Technology Center, Arlington, Virginta, July. 1993.

Software Technology for Adaptable Reliable Systems (STARS), Organization
Domain Modelling (ODM), Volume | - Conceptual Foundations, Process and
Workproduct Descriptions, Version 0.5 - DRAFT. Unisys STARS Technical
Report STARS-UC-05156/024/00, Advanced Research Projects Agency, STARS
Technology Center, Arlington, Virginia, July, 1993.

GTE Government Systems, NATO Standard for Development of Reusable Soft-

ware Components, NATO Communications and Information Systems Agency,
Brussels, Belgium, March 1992,

GTE Government Systems, NATO Standard for Management of a Reusable
Sofrware Component Library, NATO Communications and Information Systems
Agency, Brussels, Belgium, March 1992.

GTE Government Systems, NATO Standard for Software Reuse Procedures,
NATO Communications and Information Systems Agency, Brussels, Belgium,
March 1992,

J R Tiro and H Gregorius, “Management of Reuse at IBM,”” IBM Systems Jour-
nal, vol. 32, no. 4, pp. 612-615, 1993.

W Tracz, Software Reuse Myths, 13, pp. 17-21, ACM SIGSOFT Software Engi-
neering Notes, 1988,

Virginia Center of Excellence for Software Reuse and Technology Transfer,
Reu{e Adoption Guidebook. Technical Report SPC-92051-CMC, Software Pro-
ductivity Consortium, Herndon, Virginia, November, 1992.

M Wasmund, “Implementing Critical Success Factors in Software Reuse,” I1BM
Systems Journal, vol. 32, no. 4, pp. 595-611, 1993,

R.C. Waters, “The Programmer’s Apprentice: A session with KBEmacs,” /EEE
Transactions on Software Engineering, vol. 11, pp. 1296-1320, November 1985.

G M Weinberg, The Psychology of Computer Programming, Van Nostrand, New
York, 1971.

Edmond Weiss, “USABILITY: Stereotypes and Traps,” in Text, ConText, and
HyperText, ed. Edward Barrett, pp. [75-185, MIT Barrett, Cambridge, Mas-
sachusetts, 1988.

PJ W_il]iams and P Hammond, “The Creation of Electronic Visual Archives for
Teaching and Learning,” Proceedings of the 12th UK Eurographics Conference,
1994,

159

160

93.

94,

95.

96.

Software Reuse

S.N. Woodfield, N.E. Gibbs, and I.S. Collofello, “Improved Software Reliabil-
ity through the Use of Functional and Structural Testing,” /EEE Pheonix Con-
ference Computers and Communications, pp. 154-157, IEEE Computer Society
Press, Los Alamitos, California, 1983.

Scott N Woodfield, David W Embley, and Del T Scott, “Can Programmers
Reuse Software 7, IEEE Software, pp. 52-59, July 1987.

Surya B Yadav, Ralph R Bravoco, Akemi T Chatfield, and T M Rjkumar,
“Comparison of Analysis Techniques for Information Requirements Determina-
tion,” Communications of the ACM, vol. 31, no. 9, pp. 1090-1097, 1988.

R T Yeh and P Zave, ““‘Specifying Software Requirements,” Proceedings of the
{EEE, vol. 68, no. 9, pp. 1077-85, IEEE, New York, 1980,

Index

-A-

abstractional stages, 75

access, 5

accounting methods, 123

accuracy of retrieval system, 61,
71

acquires, 38

activities, 141

Ada Packages, 80

American Association of Iron and
Steel Engineers, 121

Andrew Help System, 70

Andrew Toolkit, 68

anticipated tailoring, 39

anticipated target, 39

application generator, 114, 117

applications software, 2

assessment processes, 31

asset acceptance, 38

asset acquisition, 38

asset brokering processes, 37

asset cataloging, 38

asset creation, 34

asset implementation, 35

asset utilisation, 39, 75

assimilate, 38

attribute/value pairs, 94

attributive relation, 52

audit, 44

author courseware, 136

automatic indexing, 49

automatically generated, 116

award, 131

bar charts, 25

161
benefit, 148
benefit of the library, 137
benefits of reuse, 116-117
benevolent organisation, 45
black box testing of software, 89
Bofors Electronics, 119
bottom-up, 53
browse, 60
browse tool, 105
browsing, 61
building blocks, 127
building blocks approach, 3

-C-

C++ building blocks, 127
CASE, 91

case studies, [18

CASE tools, 110, 117

CASE tools export files, 110
cash incentive scheme, 131
category, 109

CCL commands, 106, 121
champion reuse, 44

chief programmer team, 21
classes, 15

classification, 47

classification of components, 74
COCOMO, 23

code reuse, 114

cohesiveness, 77
collaboration, 7

collaborative authoring, 108
collector, 135
commercially-funded, 149
common information space, 139
communication needs, 24
communication paths, 125
communication space, 139
communication, 20

company changes for reuse, 45
component abstraction, 75
component attributes, 77

162

component composition, 78

component libraries, 3

component ranking, 64

component repackaging, 75, 113

component reusability, 77

component transformation, 835

composing components, 78, 80,
83

composition, 45, 114

compromises, 75

computer aided software
engineering, 91

concept model, 63, 99

concept models for retrieval, 64

conceptual framework for reuse
processes, 46

conceptual requirements, 11

conditional compilation, 79

consistency from reuse, 117

consistent interfaces, 115

COnstructive COst MOdel, 23

contexts, 95

contracting methods, 148

conversion program, 83

converted, 136

coordination and reuse space, 139

Coordination Services, 142

coordination, 122

copyright, 43

core team, 128

corporate reuse strategy, 128

cost effective, 41, 137

cost estimating algorithm for
courseware, 134

cost of building questionnaires,
121

cost of reuse, 23, 45

cost of the library, 137

cost, 148

courseware, 133

courseware reuse problems, 144

critical success factors, 122

Software Reuse

cumulative discounted cash flow,
42
curriculum, 125

-D-

data definition facilities, 112
data flow diagram, 13, 96
databases for CASE, 91-92
defects, 129

depth-first traversal, 108
design, 9

design and implementation, 19
design decisions, 76-77

design methods, 11

developer advantages, 117
developer attitudes, 2
developer productivity, 2
developer team management, 114
development methodology, 2
direction setting, 31
directories, 97

document classification, 50
document headings, 52, 108
document organisation, 52, 59, 96
document outlines, 108
document reorganisation, 77, 108
document retrieval, 64, 96, 110
document-oriented retrieval, 73
document-oriented system, 58
documentation, 16, 18§
documentation standards, 111
domain analysis, 4, 653, 67
domain analysis processes, 34
domain analyst, 4

domain model, 52, 57

domain modelling, 74

domain type, 134
domain-specific, 28
domain-specific reuse kits, 129
DRACO, 114

-E-

edict, 125
education, 123, 131
effective retrieval, 138
effectiveness of reuse, 148
efficiency, 145
embedded mode project, 23
engineering concerns, 146
enumerated classification, 52
example questionnaire, 102
examples of reuse, 119
exceptions, 14
existing techniques and
knowledge, 122
expectations, 75
experienced users, 68
extraction algorithm, 110

-F-

facet, 55

facet term, 55

filters, 82

fingertip reuse, 126, 132

formal languages, 67

formal method, 85

formal specification, 113

format converters, 138

formats, 82

FORTRAN, 3

fourth generation languages, 117

free-text retrieval, 63-64

full-text searching, 64

functional requirements, 11

functional testing, 16

functionally equivalent
components, 67

-G-

generated programs, 85

Index

generative, 114

generative approach, 3

generic, 29

generic form of components, 80

generic packages, 79

global dependencies, 127

grass-roots, 125

GTE Asset Management
Programme, 118

-H-

hardware platforms, 139

Hewlett Packard Interface
Architect, 117

hierarchical, 20

hierarchical relation, 52

high-level programming
languages, 56

history of software engineering, 2

human roles, 113

hypermedia, 133

hypertext, 4, 108

hypertext abstract machine, 93

hypertext CASE, 95

hypertext storage system, 93

-1-

IBM Corporate Reuse Council,
121

IBM Reuse Technology Center,
122

implementation, 9, 44

incentive programs, 124

inconsistency, 62

incorporated by reference, 38

increases in reliability, 81

incremental change, 132

indexer, 135

indexing language maintenance,
143

164

indexing terms, 52

Industrial Revolution, 2

information development, 16

information life-cycle, 2

information retrieval system, 72

information unit, 141, 143

infrastructure implementation
processes, 33

Infrastructure Planning, 32

inherit, 51

inhibitors to reuse, 2, 128

innovation exploration processes,
33

instructional objects, 139

integrated project support
environment, 91

integrated, 92

interaction, 20

interaction-oriented, 22

interconnections, 92

interface architect, 116

interpretive indexing, 49

invalidated, 86

investment, 148

investment in documentation, 18

investment in reuse, 41

IRS Ltd, 134

iterative readjustment, 126

iterative searching, 61

-J-
Japanese, 62
Japanese Software Houses, 64
K-

keyword retrieval, 67

-L-

large system development, 20

Software Reuse

legal issues, 44

LEGO building blocks, 129

libraries of media, 133

library, 127

library creation, 59

library data modelling processes,
37

library operation processes, 36

library usage support, 37

literature database, 124

M-

maintenance, 9

maintenance effort model, 19

maintenance of software, 77, 89

man page, 68

management structure, 20

management support, 121

managerial concerns, 146

manuals, 17

manufacturing approach, 129

Many Using and Creating
Hypermedia System, 108

mappings, 113

match, 76

maturity, 124

media formats, 144

media index, 138

media type, 134

message, 15, 141

minimum model, 67

mixed methodologies, 76

modifying the development
process, 123

Module Interconnection
Languages, 83

motivation, 123

Motorola, 130

MUCH, 106

-N-

National Library of Medicine,
149

natural language requirements, 10

NEC Software Engineering
Laboratory, 119

need for reuse, 2

negligible net impact, 131

Neptune, 94

net saving, 42

non-cede documents, 77

non-technical factors, 44

number of reused lines, 124

-O-

object management, 92

object-oriented, 57

object-oriented retrieval, 74

object-oriented software models,
15,110

object-oriented systems, 59

objects, 52, 57

office information retrieval
system, 13

on-line help systems, 68, 70

Open System for Collaborative
Authoring and Reuse, 139

operating system, 92, 139

operations, 52

organic mode project, 23

organisation for reuse, 49

organisation, 47

organising, 49

original author, 88

OSCAR services, 139

outline, 50, 106

outline extraction, 57, 77

overview documents, 69

owner, 42

Index

paradox, 89

parameters, 83

partial interfaces, 117

partnership with the client, 42

paits centre, 125, 127

patent, 43

patterns, 50

pedagogical classification
schema, 140

person-days, 23

perspectives, 146

pipe command, 81

populator, 135

Practitioner case study, 119

Practitioner project, 91, 121

Practitioner reuse support system,
96

precision, 71

preferred terms in thesauri, 55

PRESS toolkit, 96

PRESSTIGE, 96, 106, 121

PRESSTO, 96, 98

primary business, 18

primitive commands, 81

productivity, 2

programmer productivity, 24

project management processes, 32

project observation processes, 33

project planning processes, 32

project reuse team leader, 121

proposed component, 38

publicly-funded, 149

-Q-
quality, 75, 88
quality circles, 44
quality of software, 89
questionnaire, 101
questionnaire attribute values, 102

165

166

questionnaires, 120-121

-R-

rapid prototyping, 148

Raytheon Missile Systems, 118

recall, 71i

reliability of components, 83

reorganisation stage, 75

reorganisation, 47, 75

repackaging of documentation,
109

requirements, 9

requirements document, 9

rethink, 2

retrieval, 47, 135

retrieval function, 98

retrieval of components, 60, 67,
74

retrieval specification, 74

retrieval system, 53

retrieval tools, 67

retrieval, 47

reusable parametric component,
117

reuse by reference, 149

reuse costs and benefits, 41

reuse enactment, 32

reuse learning, 33

reuse management, 29

reuse oriented life-cycles, 47

reuse planning, 31

reuse services, 140

reuse task force, 130

reverse engineering, 77

risks, 42

roles, 141

rules, 141

savings, 46

Software Reuse

scoping processes, 31

search, 60

self-oriented, 22

semantics, 64

SGML, 108

size of a library, 71

sizes, 56

small library, 128, 132, 149

small team, 20

SoftClass, 91, 108, 113

SoftText, 113

software crisis-1

software facets, 55

software factory, 130

software life-cycle, 9, 52, 61, 146

software maintenance, 18

software project modelling, 23

software quality, 2

software reuse, 7

software technology for
adaptable, reliable systems, 29

sources, 48

sources for reuse, 125

specialisation of components, 80

specialising, 78

standards, 19

start-up costs, 40

steel mill example, 121

steel mills, 119

structural approach, 49

structural indexing, 49

structural testing, 16

structure relation, 52

sub-component, 12

support tools, 125

symbolic product-1

system decomposition, 13

-T-

table of contents, 137
tailoring, 78

target system, 76

task-oriented, 22

technology forecasting, 35

template, 80

template approach, 67

tension, 74

testing, 9, 16

testing components, 89

testing strategies, 86

textual documentation, 110

themes, 50

thesauri, 77

thesauri for reorganisation, 77

thesauri for retrieval, 64

thesaurus, 52, 64, 100

thesaurus construction, 55, 106

thesaurus relations, 55

thesaurus tool, 105-106

thesaurus-aided, 62

time-consuming, 76

time-to-market, 129

Toolbook windows, 135

tools for reorganisation, 85

tools for reuse, 91, 114

top-down, 53

top-down design, 12

Toshiba Fuchu Software Factory,
118

toy examples, 85

traceable, 13

trade-off, 71

traders, 123

transformation, 85

transformation of components,
113

transformations, 85

transforming reusable
components, 111

-U-
U.K. Patents Act, 44

Index 167

unanticipated tailoring, 39
unanticipated Target, 39
universal defense systems, 119
Unix man system, 5, 68
unsuitable, 76

user interface toolkits, 117
user support technology, 18

.V-

versions, 82
video libraries, 134
vision for reuse, 28

SW-

word frequency indexing, 49
word index for retrieval, 98
work activities, 16
workspace, 142

workspaces, 95, 141
worldwide campaign, 121
writing with reuse, 107

