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Abstract 

Context:  AI advances are impacting healthcare and the possible impact of Generative AI on 
palliative care deserves special attention.    

Objectives:  The objective is to establish the literature trends in generative AI for palliative care and 
identify key opportunities. 

Methods: A systematic and narrative literature review of PubMed entries from September 2023 till 
September 2024 establishes existing work and focuses on trends in generative AI for palliative care.   

Results:   The bulk of AI work in palliative care focuses on traditional tools for pattern analysis and 
attempts to better forecast mortality or characterize pain.  Generative AI work tends to use 
ChatGPT-like systems to either answer predefined patient queries or summarize medical records.   
Work in other disciplines, such as radiation oncology, reveals the value of large-scale integration of 
Generative AI into the workflow. 

Conclusion:  A key opportunity for palliative care is to develop a hospice enterprise system that 
uses models of roles and functions to drive communication with patients and professionals 
intermediated by Generative AI. 

Key Message:  The literature on AI in palliative care indicates little opportunities for Generative AI, 
and a proposal for an intelligent hospice system highlights those opportunities. 

Keywords:  Artificial Intelligence, Large Language Models, Palliative Care, Narrative Literature 
Review, Hospice Care, PubMed  
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1 Introduction 
A systematic literature review on PubMed will guide an iterative, concept-driven analysis of the field 
on Generative AI and palliative care.  Hypotheses explored include that Generative AI opens new 
opportunities for engaging patients in palliative care and that the key to success of these 
applications is fitting them into the workflow.[1]   

Part of this paper complies with the methodology “Enhancing transparency in reporting the 
synthesis of qualitative research (ENTREQ)”.[2]  Queries of Medical Subject Headings (MeSH) 
concepts will exploit the retrieval properties of PubMed.[3]    The recent explosion of interest in AI in 
healthcare can be traced to ChatGPT’s appearance in 2022,[4] and this paper focuses on the 
publications entered into PubMed between 2023/09/09 and 2024/09/09.   

Since MeSH did not specifically represent the concept ‘Generative AI’, the search was broadened to 
its parent concept ‘AI’.  The European Commission's AI Act was the first to comprehensively 
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regulate AI at a supranational level [5] and defines AI as:[6]  “‘… a machine-based system … to 
operate with varying levels of autonomy and that may exhibit adaptiveness after deployment, and 
that … infers, from the input it receives, how to generate … predictions, content, … or decisions ….”.  
Society has entered the 3rd epoch of AI where:[7]  “AI 1.0 includes symbolic AI … AI 3.0 is the era of 
…  generative AI”.  Text-based generative AI is the focus of this paper and uses hundreds of billions 
of digital neurons that were trained on the world’s documents to manifests artificial general 
intelligence. Generative AI may be abbreviated as GenAI or referred to as Large Language Models 
(LLMs).  GenAI uses machine learning which is the AI technology most discussed in the healthcare 
literature.[8]     

Palliative care maximizes quality of life through alleviation of suffering and promotion of adaptive 
coping for those facing serious illnesses.[9]   The timing of palliative care consultation varies based 
on an individual’s evolving needs,[10] and only treatments consistent with patient preferences have 
positive outcomes.[11]  Palliative nursing care addresses family dynamics, quality of life, 
psychological, physical, and cognitive comfort, safety, and physiological function.[12]    Hospice 
care is a subset of palliative care.  A Medicare patient qualifies for hospice care when her doctors 
certify that her life expectancy is no more than 6 months and she accepts comfort over curative 
care.[13]   

2 Method 
The US National Library of Medicine indexes PubMed articles with concepts from MeSH.  Since 
2023, indexing has been fully automatic with manual quality control.[14]  MeSH includes hundreds 
of thousands of concepts connected in a hierarchy.[15]   PubMed by default expands a query to 
include all the descendants of any query MeSH concept. 

The part of the query for the palliative care literature was based on previously published literature 
reviews on palliative care[16] and on iterative fine-tuning based on following the citation trail and 
augmenting the query to cover missed, relevant articles.  The query was designed for recall rather 
than precision.   The query OR’ed together 21 MeSH concepts, 14 text keywords, and 23 journal 
titles, as detailed in Supplement “Query”.   The artificial intelligence query was guided by [8] but 
augmented iteratively to contain 5 MeSH concepts, 27 text words, and 7 journal titles (see 
“Supplement Query”).  The preceding query components were each filtered by ANDing them with 
this query:  (2023/09/09:2024/09/09[Date - Create] AND "hasabstract"[All Fields] AND 
"English"[Language]).      

The retrieved citations constitute the Large Set and will be described numerically through the lens 
of the software tool “Anne O’Tate” abbreviated as “Tate”.   Tate is a free, public, web-based tool to 
support mining of search results from PubMed.[17]    Additionally, the Large Set was placed through 
a text filter (see “Supplement Query”) that focuses on GenAI to result in the Small Set.   This Small 
Set was subsequently manually refined.   

The Small Set will be narratively described after the numerical description of the Large and Small 
Sets.    The narrative description is categorized into four parts addressing GenAI relationship to 1) 
Patients, 2) Professionals, 3) Systems, and 4) Ethics. 
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3 Results 
3.1 Frequency Results 
The Large Set contains 1,790 citations, and the Small Set, 100 citations.  The number of citations 
retrieved per query component is summarized in Table 1: “Query Retrieval Counts”. 

Tate identified pairs of MeSH concepts that co-occur in individual articles of the Large Set and were 
relatively unique to the Large Set versus PubMed as a whole.   The three most prominent MeSH 
pairs and a prototypical article characterized by that pair are:   

• “Cost-Benefit Analysis” and “Quality-Adjusted Life Years”.[18]    
• “Analgesics, Opioid” and “Pain, Postoperative”.[19]    
• “Arthroplasty, Replacement, Knee” and “Osteoarthritis, Knee”. [20, 21]   

In each article the emphasis was on the relationship between the pair, such as opioid treatment of 
postoperative pain, and AI was only incidentally used, usually in data analysis.  These three paired 
MeSH concepts are representative of the patterns in the Large Set. 

Tate identified exactly one important MeSH pair in the Small Set, namely “Artificial Intelligence” and 
“Reproducibility of Results”.   Some of those articles examined how multiple LLMs responded to 
patient palliative care questions,[22, 23]  and some, helping doctors via LLMs in  treating specific 
problems, such as radicular pain [24] or bleeding risks.[25]    

Tate identifies “Important Words” as those significantly over-represented in the retrieval set 
compared to all articles in PubMed and ranks them in order of the degree to which the word is over-
represented.   “Important Words” in the Small Set include SHAP and Roberta.   SHAP explains the 
predictions of nonlinear models, such as factors predicting mortality risk.[26]   Roberta refers to the 
LLM called “Robustly optimized BERT (RoBERTa)”, and in a typical article was used to classify clinic 
notes.[27]   

The journal frequency data from Tate show differences between the Large and Small Sets (see Table 
2 “Journal Frequency”).  The Large Set drew more heavily from voluminous publications, such as 
Scientific Reports.  The Small Set drew more heavily from the relevant specialist journals J Pain 
Symptom Manage and J Med Internet Res. 

Tate indicates the distribution of articles by country.   The most salient difference between the Large 
Set and the Small Set is that China is second in the Large Set but does not appear in the top twenty 
of the Small Set.  The GenAI cited in PubMed are trained largely on English-language documents.   

3.2 GenAI supports Patients 
A narrative, thematic analysis of articles in the Small Set reveals one grouping that focuses on 
generative AI interacting with patients and tends to show positive results but include ethical 
warnings.  Examples of help offered follow.  GPT-3 was presented patient prompts about palliative 
care, and GPT-3 responses were judged similar to human responses.[28]  ChatGPT provided 
guideline-compliant therapy recommendations in response to queries from a library of palliative-
care patient queries.[29]  Parents were helped when GPT-4 advised them about pediatric 
emergencies.[30]   GenAI can translate for underserved populations[31] or answer based on 
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demographic characteristics of the patients.[32]   Patients accepted chatbots for self-managing 
chronic illnesses,[33] and conversational agents support physical, mental, and social 
outcomes.[34] 

Two papers emphasized weaknesses of ChatGPT responses to patients.  In one, patients of 
different races and insurance status received biased responses.[32]  In another, ChatGPT did not 
accurately answer diagnosis and treatment questions about cancer survivorship.[35] 

Responses from GenAI depend on the prompt given [36] and whether fine-tuning or retrieval-
augmented-generation were used.   The following three papers evaluated GenAI systems and 
deemed the systems to have significant failings but did not address prompt engineering, fine 
tuning, or retrieval augmented generation.  In three articles, questions about palliative care were 
posed to various LLMs, and responses either had the wrong readability level or deviated too far from 
expert answers.[22, 23, 37]  The literature has well established that GenAI makes mistakes, 
hallucinates, and manifests bias.  

3.3 GenAI supports Professionals 
GenAI can support diagnosis by finding patterns that professionals have difficulty finding.  It has 

• facilitated diagnosis by detecting subtle differences in pain expression,[38]   
• evaluated bleeding risk,[25] and 
• translated billing administrative data into a narrative that facilitates palliative care clinical 

decision-making.[39]   

GenAI can also support managing palliative care problems and can  

• infer wishes of mentally incapacitated patients based on prior records,[40]   
• anticipate cancer treatment side-effects,[41]    
• predict recovery in cancer survivors,[42] or 
• provides insights into the patient’s emotional state.[43]     

GenAI may also fail, as in one study on managing labor analgesia,[44] and in all cases GenAI may 
require fine-tuning and retrieval augmented generation.[45]   

GenAI has been used to help write literature reviews.  A series of literature reviews about 
osteoporosis in one journal were partially written by LLMs.  One article said,  “This review article is 
part of a series of multiple manuscripts designed to determine the utility of using artificial 
intelligence for writing scientific reviews”,[46]  and the other three papers had similar 
statements.[47-49] 

3.4 GenAI supports Systems 
A clinical information system relies on roles defined as functions with rules for passing messages 
among roles, but the challenge is the brittleness of the controlled vocabulary which can be side-
stepped by relying on GenAI.[50]   Historically an AI application focuses on one-tool-for-one-
problem,[51] but GenAI supports a one-tool-many-problem approach.[52] 

In a multi-agent system, each agent uses GenAI as a resource.[53]   In a patient mental health 
system, one agent is a patient, and another agent is a counselor.[54, 55]   GenAI is well suited to 
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personalizing patient scheduling, improving clinical documentation, facilitating insurance prior 
authorization, increasing patient engagement, and decreasing barriers to access to healthcare.[56] 

3.5 GenAI and Ethics 
The AI techniques in the Large Set were largely well-established in the biostatistician’s toolkit and 
might be called statistical techniques.  In those papers the focus is typically an intervention 
independent of AI.   For the Small Set the papers are often about GenAI and are far more tentative in 
their conclusions than in the Large Set.   The cautions in the GenAI papers reflect those voiced in 
the burgeoning biomedical literature about ethical guidelines for GenAI.   

The US National Academy of Medicine AI code of conduct says that AI should be engaged, safe, 
effective, equitable, efficient, accessible, transparent, accountable, secure, and adaptive.[57]  A 
discourse analysis [58] of guidelines for healthcare AI concluded that the guidelines thematically 
say that AI is desirable and unavoidable, principles are the solution to guiding AI, and trust is key. 
The National Academy of Medicine has said [59],  “There should be full transparency on the … 
quality of data used to develop AI tools. .. However, algorithmic transparency may not be required 
for all cases.”   How GenAI ethical concerns for palliative care might be unique remains to be 
explored. 

4 Discussion 
4.1 Limitations  
Methodological limitations in this work include its focus on PubMed.  Other document libraries, 
such as ACM Digital Library, CINAHL, Embase, IEEE Xplore, PsycINFO, Scopus, and Web of 
Science, could provide other relevant articles.   Further tools to semi-automatically analyze 
patterns in retrieved document sets, such as CiteSpace, could offer other insights. Recruiting 
experts to interpret articles and to agree on their significance could increase confidence in the 
conclusions.   

Benchmarks that measure GenAI’s ability to answer standardized questions are less useful than 
those which address dynamics.[60]  Developing dynamic palliative care clinical evaluations for 
GenAI remains a challenge. 

4.2 Spectrum 
Some cited papers described prompts to a publicly available LLM, while others present 
refinements to an LLM and embed it within a clinical information system.  The interpretations of the 
results vary where at:   

• one end, results are positive and have great potential but 
• the other end, results are negative and regulation must constrain further work.    

In some fields, such as radiation oncology, the enthusiasm about multi-agent generative AI is 
unbridled, as some radiation oncologists say that the required combination of information available 
with image, omic, and health record data is orders of magnitude beyond the cognitive capacity of a 
human.[58]   Whether palliative care can show such GenAI magnification of ability remains to be 
shown.   
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The history of computer applications diffusing in healthcare shows that the first successes occur 
with numeric areas, such as billing, and the second successes in areas not highly dependent on 
patient-doctor interaction, such as pathology and radiology.  Since GenAI is qualitatively different 
from the previous applications, does palliative care have a special opportunity?   

4.3 Proposal 
To recap, the review of the literature on Palliative Care and GenAI has shown trends, such as 
improving the forecasting of mortality or the monitoring of pain. However, each of these 
applications is stand-alone and unlikely to diffuse until incorporated in a clinical information 
system.[61]  A palliative care specialist consulting in a cancer center uses the cancer information 
system.   A special opportunity exists in hospice care. 

In a GenAI-supported hospice information system the roles of the interdisciplinary team and the 
roles of patient and their family are represented.  Patients could choose to assume their online role 
and interact with other roles.  The implementation of the patient’s role includes a soul that 
algorithmically-speaking is a scorecard which indicates the patient’s objectives and the progress 
towards them.   As an example of a function of a professional, an automated social worker could 
interact with patients to help them develop their dignity document.[41]   

Historically a typical AI application focuses on one medical problem, such as coding medical 
problem statements[51] or diagnosing bacteremia.  This one-tool-for-one-problem approach 
stymies integration.   The flexibility of GenAI to reason across modalities and to be driven via prompt 
engineering to incorporate new information supports a one-tool-many-problem approach[52]  and 
suits hospice care.[62, 63]    However, getting support from the relevant stakeholders, including a 
hospice system, professionals, patients, payers, and regulators would be difficult.  GenAI 
revolutionized AI by showed that a computer can sensibly communicate with anyone about 
anything, and the challenge is to exploit this capability to help hospice patients.     
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